Offcanvas
추천 테크라이브러리

BI|분석

“운영 관리가 AI/ML의 성패를 결정한다” 머신러닝을 위한 MLOps 전략과 HPE Ezmeral MLOps - IDG Summary

과학 기술에는 어두운 이면이 존재한다. 인간의 이미지를 실제와 유사하게 합성하는 ‘딥페이크(Deepfake)’도 이런 논란이 있는 대표적인 기술이다. 가장 널리 알려진 사용례가 가짜 뉴스와 디지털 성범죄 영상 제작일 정도로 딥페이크의 역기능을 우려하는 목소리가 크다. 하지만 순기능도 간과해서는 안 되는 부분이다. 딥페이크로 그리운 사람의 생전 모습을 재현하거나 고품질 합성 영상을 제작해 영화 산업의 효율을 높일 수 있으며, 질병 진단에 활용하기도 한다. 특히 최근에는 적은 양의 데이터에 AI 알고리즘을 적용해 데이터양을 늘리는 ‘데이터 증강’ 분야에서 새로운 게임 체인저로 주목받고 있다. 다양한 활용사례를 통해 딥페이크의 명암을 살펴보고, 의미 있는 발전 방향을 모색해 본다. 주요 내용 - “AI가 낳은 괴물?” 딥페이크의 탄생 - 딥페이크의 핵심 기술 ‘GAN’ - 그리고 시작된 가짜와의 전쟁 - 산업 전반의 혁신을 가져올 ‘게임 체인저’로서의 딥페이크 - 딥러닝을 활용한 딥페이크 탐지 기술 동향 - 딥페이크를 감당할 사회적 역량이 필요한 시점

테크라이브러리 자료 업로드 신청

입력하신 이메일로 안내메일을 발송해드립니다.

BI|분석

의료 인공지능 기업 LUNIT : 데이터 사이언스를 위한 HP Z 워크스테이션 CASE STUDY

대한민국 딥러닝 1호 스타트업 기업 루닛의 대표 제품인 ‘루닛 인사이트(Lunit INSIGHT)’는 딥러닝 기반 인공지능 기술을 활용한 의료AI 제품으로 두 종류가 있다. 하나는 흉부 X레이를 분석해 폐 관련 질환을 빠르고 정확히 진단하는 ‘루닛 인사이트 CXR’, 다른 하나는 유방암 등이 의심되는 이상 부위를 알려주는 ‘루닛 인사이트 MMG’다. 이 의료영상 검출 보조 소프트웨어 제품의 개발과 활용에 HP 워크스테이션 모델이 중요한 역할을 수행했다. <8p> 주요 내용 - HP 기술의 정점을 현장에서 구현한 루닛(Lunit)사의 워크스테이션 실사용기 - 극한의 환경에서도 안정적으로 구동 가능한 HP의 내구성과 편의성  - 루닛의 향후 행보에도 든든한 파트너가 될 HP - 무한대의 가능성을 담은 HP 워크스테이션     인텔® 제온® W-11955M 프로세서의 탁월한 설계를 경험해보세요. Ultrabook, 울트라북, Celeron, 셀러론, Celeron Inside, Core Inside, Intel, 인텔, Intel 로고, 인텔 로고, Intel Atom, 인텔 아톰, Intel Atom Inside, Intel Core, 인텔 코어, Intel Inside, Intel Inside 로고, Intel vPro, 인텔 v프로, Intel Evo, 인텔 Evo, Pentium, 펜티엄, Pentium Inside, vPro Inside, Xeon, 제온, Xeon Inside, Intel Agilex, 인텔 Agilex, Arria, Cyclone, Movidius, eASIC, Iris, Killer, MAX, Select Solutions, 셀렉트 솔루션, Stratix, Tofino, Intel Optane 및 인텔 Optane은 인텔사 또는 그 자회사의 상표입니다.

HP Inc 2021.12.01

BI|분석

디지털 트랜스포메이션에서 한발 앞서가기 위한 4가지 성공 전략

기업이 팬데믹 위기를 극복하기 위해 IT 부서에 의존하면서 분석과 AI에 대한 관심과 투자가 증가했습니다. 이러한 추세는 지속적으로 이어질 전망입니다. 전략은 성공적이었지만 일관된 분석과 AI 전략 개발에는 여전히 어려움을 겪는 조직이 많습니다. 지금은 IT 및 데이터 사이언스 리더가 분석과 AI 채택을 가속화하기 위해 일관된 전략을 추진해야 하는 시기입니다. 특히 기술 부채가 계속해서 큰 부담을 주고 있으므로, 기존 투자에서 더 많은 가치를 창출할 수 있는 창의적인 방법을 찾는 것이 중요합니다. 가장 성공적인 조직들이 비즈니스 차별화와 탄력성을 위해 분석과 AI 전략을 구축하는 4가지 방법과 실제 사례를 소개합니다. <14p> 주요 내용 - 분석과 AI를 위한 클라우드의 과제 - 지능형 클라우드로의 이동  - 현재 ModelOps 프로세스 평가 - 데이터 사이언스 업무를 지원할 커뮤니티의 활성화  - 거버넌스 도입  - 비즈니스 사용 사례

SAS 2021.09.23

BI|분석

클라우드와 진화하는 데이터 사이언스 및 5가지 성공 요건 : TDWI Research

오늘날 많은 기업은 분석 작업을 지원하기 위해 다중 플랫폼 환경을 조성하고 있습니다. 클라우드는 이 전략의 핵심입니다. 실제로 TDWI 연구에 따르면, 클라우드 데이터웨어 하우스 또는 데이터 레이크와 같은 플랫폼은 분석을 지원하기 위한 데이터 관리의 성장점이 됩니다. 클라우드에는 고급 분석을 위한 수많은 이점이 존재합니다. 그 중 최고는 확장성과 탄력성을 꼽을 수 있습니다. 이 체크리스트는 클라우드 기반 실사례 평가, 클라우드 컴퓨팅 아키텍처 및 계획 고려 사항을 포함하여 데이터 사이언스에 클라우드를 활용하는 5 가지 모범 사례를 실었습니다. <12p> 주요 내용 - 분석 실사례에 대한 평가 - 데이터 중력에 대한 고찰 - 진화하는 분석 아키텍쳐에 대한 이해 - 데이터 사이언스 운영화에 대한 노력

SAS 2021.02.26

BI|분석

올바르게 구현된 AI : 데이터-훈련-추론 AI 모델의 이해

데이터 사이언스 전문가가 아니더라도 엔터프라이즈 AI의 가장 복잡한 요소까지 이해하고 해석하여 실행에 옮길 수 있다면 어떨까요? 지금까지 엔터프라이즈 AI는 모델 개발 및 훈련에 정통한 분석 전문가들의 전유물로 여겨지곤 했습니다. 하지만 AI 중심의 이니셔티브가 비즈니스의 전 범위로 확장되면서 상황은 완전히 달라지고 있습니다. 이러한 변화의 선두에는 가치 기반의 AI 활동 프레임워크가 있습니다. 이것을 데이터-훈련-추론(Data-Train-Inference, DTI) AI 모델이라고 하는데, 본 문서에서는 이 AI 모델에 대해 설명하고자 합니다.  주요 내용 - 데이터에 관한 네 가지 진실 - 속도 및 정확성에 대한 요구와 해묵은 갈등 - 추론의 실례 - 모델의 완성

IBM 2019.11.13

회사명:한국IDG 제호: ITWorld 주소 : 서울시 중구 세종대로 23, 4층 우)04512
등록번호 : 서울 아00743 등록일자 : 2009년 01월 19일

발행인 : 박형미 편집인 : 박재곤 청소년보호책임자 : 한정규
사업자 등록번호 : 214-87-22467 Tel : 02-558-6950

Copyright © 2022 International Data Group. All rights reserved.