글로벌 칼럼 | “SQL 50주년” 구조화 쿼리 언어의 다음 단계를 생각할 때
SQL은 이제 50년이 됐다. SQL은 데이터베이스를 중심으로 설계되고 채택됐으며, 데이터 관리 및 인터랙션을 위한 방법으로 계속 성장하고 발전해 왔다. 스택 오버플로우(Stack Overflow)에 따르면, 전문 프로그래머가 정기적으로 사용하는 언어 중 세 번째로 많이 사용되는 언어이다. 2023년에는 IEEE가 SQL이 다른 프로그래밍 언어와 결합할 수 있기 때문에 개발자가 취업을 위해 알아야 할 가장 인기 있는 언어라고 평가하기도 했다.
오늘날 사용되고 있는 다른 오래된 언어들을 살펴보면, 1959년에 출시된 COBOL과 1958년에 처음 컴파일된 FORTRAN 같은 언어도 여전히 사용되고 있다. 이런 언어는 보수가 좋은 일을 제시하기는 하지만, 새롭고 흥미로운 프로젝트보다는 기존 레거시 환경과 연결되어 있다. 반면에 SQL은 여전히 AI, 분석 및 소프트웨어 개발을 위한 작업에 사용되고 있다. SQL은 우리가 매일 데이터를 활용하는 방식에 대한 표준으로 계속 사용되고 있다.
SQL이 여전히 중요한 이유
SQL을 보면 왜 그토록 오랫동안 살아남아 번성할 수 있었는지 의문이 들 수 있다. SQL은 독특한 구문으로 이뤄져 있기 때문에 배우기가 쉽지 않은 것은 분명하다. SQL과 관련된 사용자 경험은 신입 개발자가 익히기 어려울 수 있다. 이와 더불어 모든 데이터베이스 업체는 SQL을 지원해야 하지만, 구현 방법은 각기 다른 특징이나 뉘앙스가 있다. 따라서 한 데이터베이스에 대한 접근 방식이 다른 데이터베이스에 쉽게 적용되지 않을 수 있으며, 이로 인해 더 많은 작업과 더 많은 지원 요구사항이 발생할 수 있다.설상가상으로, SQL은 실수를 저지르기 쉬우며, 이런 실수는 실제적이고 잠재적으로 치명적인 결과를 초래할 수 있다. 예를 들어, 명령어에서 WHERE 절을 누락하면 원하는 트랜잭션을 수행하는 대신 전체 테이블을 삭제해 데이터 손실 및 복구 작업으로 이어질 수 있다. 로직을 점검하고 실제로 어떻게 작동하는지 아는 것은 필수 요건이다.
그렇다면 SQL이 처음 설계되고 출시된 지 50년이 지난 오늘날에도 여전히 데이터 작업에 여전히 사용되는 이유는 무엇일까? SQL은 강력한 수학적 이론에 기반을 두고 있기 때문에 효과적으로 작동하고 설계 당시의 사용례를 계속 지원한다. SQL과 관계형 데이터베이스를 결합하면 생성하는 데이터와 그 데이터를 관리하는 방법을 안정적이고 효과적이며 확장 가능한 방식으로 많은 비즈니스 프랙티스에 매핑할 수 있다는 것이다. 간단히 말해, SQL은 잘 작동하며, SQL을 대체할 수 있는 어떤 선택지도 같은 식으로 들어맞지 않았다.
예를 들어, SQL은 단일 요청당 여러 행을 반환하는 최초의 프로그래밍 언어였다. 따라서 데이터 집합 내에서, 결과적으로 비즈니스와 애플리케이션 내에서 어떤 일이 일어나고 있는지에 대한 데이터를 쉽게 얻고 이를 비즈니스에서 사용할 수 있는 데이터로 변환할 수 있다. 마찬가지로 SQL을 사용하면 정보를 여러 테이블로 분류하고 분리한 다음, 한 테이블에는 고객 데이터를, 다른 테이블에는 제조 데이터를 넣는 등 특정 비즈니스 작업에 해당 테이블의 데이터를 사용하는 것이 더 쉬워진다. 트랜잭션 수행 능력은 오늘날 대부분 프로세스에서 중추적인 역할을 하며, SQL은 이를 대규모로 수행할 수 있도록 했다.
SQL 성공의 또 다른 이유 중 하나는 항상 시대와 함께 발전했다는 점이다. 관계형 데이터베이스에 뿌리를 둔 SQL은 여러 해에 걸쳐 지리 정보 시스템 데이터, JSON 문서, XML 및 YAML에 대한 지원을 추가했다. 이를 통해 SQL은 개발자의 데이터 인터랙션 방식에 발맞춰 왔다. 이제 SQL은 벡터 데이터와 결합할 수 있어, 개발자는 SQL을 사용해 데이터를 활용하면서 생성형 AI 애플리케이션을 위한 벡터 검색을 수행할 수 있다.
SQL의 미래
과거에도 SQL을 대체하려는 시도가 있었다. 관계형 데이터베이스를 대체하고 대규모 데이터 작업 및 관리의 기존 모델에서 벗어나기 위해 NoSQL(Not only SQL) 데이터베이스가 개발됐다. 그러나 NoSQL 데이터베이스는 SQL을 대체하기보다는 SQL과 유사한 자체 언어를 추가하는 데 그쳤다. 그것도 SQL이 개발자의 작업 방식에 뿌리내린 일부 방법론과 접근 방식을 복제한 것이었다.자연어 처리 옹호 진영에서 SQL의 표준화되고 투박한 접근 방식을 없애는 새로운 방법을 요구한 적도 있다. 그러나 이런 시도는 결국 대체하려고 했던 SQL만큼이나 투박한 방식으로 끝났고, 결국 외면당하거나 무시당했다. 생성형 AI는 LLM의 언어 모델이 학습의 일부로 대량의 SQL 코드에 노출되어 왔기 때문에 개발자의 SQL 작업을 대신할 수 있다. 이런 방식은 시간이 지나면서 점점 발전하고 대중화되겠지만, 데이터 세트와의 실제 인터랙션과 결과를 사용자에게 다시 전달하기 위해서는 여전히 SQL에 의존해야 한다. 오히려 개발자의 눈에 띄지 않더라도 SQL의 중요성은 더 커질 것이다.
무대 앞에 나서지 않더라도 SQL은 데이터를 사용하는 방식에서 중요한 역할을 계속할 것이다. 모든 IT 시스템의 엄청난 비율이 데이터에 의존하여 작동하는 만큼, SQL은 금방 사라지지 않을 것이다. 따라서 SQL의 50주년을 축하하며 앞으로 어떻게 계속 발전시키고 사용할 수 있을지 생각해 보자.
* Charly Batista는 오픈소스 데이터베이스 소프트웨어, 지원, 서비스 전문업체 Percona의 PostgreSQL 기술 책임자이다.
editor@itworld.co.kr
함께 보면 좋은 콘텐츠
Sponsored
Seagate
'반박 불가' 하드 드라이브와 SSD에 관한 3가지 진실
ⓒ Getty Images Bank 하드 드라이브가 멸종할 것이라는 논쟁이 10년 넘게 계속되고 있다. 빠른 속도와 뛰어난 성능이 필요한 애플리케이션에 적합한 플래시 스토리지의 연매출이 증가하고 있는 것은 자명한 사실이다. 하지만, 클라우드의 보편화 및 AI 사용 사례의 등장으로 인해 방대한 데이터 세트의 가치가 높아지는 시대에 하드 드라이브는 플래시 스토리지로 대체할 수 없는 가치를 가지고 있다. 전 세계 엑사바이트(EB) 규모 데이터의 대부분을 저장하는 하드 드라이브는 데이터센터에서 그 어느 때보다 필수적이다. 전 세계 데이터 세트의 대부분이 저장된 엔터프라이즈 및 대규모 클라우드 데이터센터는 데이터 성장에서 핵심이 될 것이다. 하드 드라이브와 SSD를 비교하자면, 하드 드라이브 스토리지는 2022년에서 2027년 사이 6,996EB 증가할 것으로 예상되는 반면, SSD는 1,363EB 증가할 것으로 보인다. ⓒ Seagate 생성형 AI 시대에는 콘텐츠를 경제적으로 저장해야 하기 때문에 플래시 기술과 밀접하게 결합된 컴퓨팅 클러스터는 더 큰 하드 드라이브 EB의 다운스트림 수요를 직간접적으로 촉진할 것이다. 하드 드라이브가 왜 데이터 스토리지 아키텍처의 중심이 될 수밖에 없는지는 시장 데이터를 근거로 설명 가능하다. 가격 책정 근거 없는 믿음 : SSD 가격이 곧 하드 드라이브 가격과 같아질 것이다. 사실 : SSD와 하드 드라이브 가격은 향후 10년간 어느 시점에도 수렴하지 않을 것이다. 데이터가 이를 명확하게 뒷받침한다. 하드 드라이브는 SSD에 비해 테라바이트당 비용 면에서 확고한 우위를 점하고 있으며, 이로 인해 하드 드라이브는 데이터센터 스토리지 인프라의 확고한 주춧돌 역할을 하고 있다. IDC 및 포워드 인사이트(Forward Insights)의 연구에 따르면, 하드 드라이브는 대부분의 기업 업무에 가장 비용 효율적인 옵션으로 유지될 것으로 전망된다. 엔터프라이즈 SSD와 엔터프라이즈 하드 드라이브의 TB당 가격 차이는 적어도 2027년까지 6대 1 이상의 프리미엄이 유지될 것으로 예상된다. ⓒ Seagate 이러한 TB당 가격 차이는 장치 구입 비용이 총소유비용(TCO)에서 가장 큰 비중을 차지하는 데이터센터에서 특히 두드러지게 드러난다. 장치 구입, 전력, 네트워킹, 컴퓨팅 비용을 포함한 모든 스토리지 시스템 비용을 고려하면 TB당 TCO는 하드 드라이브 기반 시스템이 훨씬 더 우수하게 나타난다. ⓒ Seagate 따라서, 플래시는 특정 고성능 작업의 수행에 탁월한 스토리지이지만, 하드 드라이브는 당분간 안정적이고 비용 효율적이며 널리 채택된 솔루션을 제공하는 데이터센터에서 계속해서 주류로 사용될 것이다. 공급과 확장의 관계 근거 없는 믿음 : NAND 공급이 모든 하드 드라이브 용량을 대체할 정도로 증가할 수 있다. 사실 : 하드 드라이브를 NAND로 완전히 교체하려면 감당할 수 없는 설비투자(CapEx)가 필요하다. NAND 산업이 모든 하드 드라이브 용량을 대체하기 위해 공급을 빠르게 늘릴 수 있다는 주장은 재정적, 물류적으로 엄청난 비용이 발생한다는 점을 간과한 낙관적인 생각이다. 산업 분석기관 욜 인텔리전스(Yole Intelligence)의 2023년 4분기 NAND 시장 모니터 리포트에 따르면, 전체 NAND 산업은 2015년~2023년 사이 3.1제타바이트(ZB)를 출하하면서 총 매출의 약 47%에 해당하는 2,080억 달러의 막대한 자본 지출을 투자해야 했다. 반면, 하드 드라이브 산업은 데이터센터 스토리지 수요의 거의 대부분을 매우 자본 효율적인 방식으로 해결하고 있다. 씨게이트가 2015년~2023년 사이 3.5ZB의 스토리지를 출하하며 투자한 자본은 총 43억 달러로, 전체 하드 드라이브 매출의 약 5%에 불과하다. 그러나 NAND 산업의 경우 ZB당 약 670억 달러에 해당하는 금액을 투자한 것으로 나타나 하드 드라이브가 데이터센터에 ZB를 공급하는 것이 훨씬 더 효율적임을 알 수 있다. ⓒ Seagate 작업 부하 근거 없는 믿음 : 올 플래시 어레이(AFA)만이 최신 엔터프라이즈 작업 부하의 성능 요구를 충족할 수 있다. 사실 : 엔터프라이즈 스토리지 아키텍처는 일반적으로 디스크 또는 하이브리드 어레이, 플래시, 테이프를 사용하여 특정 작업 부하의 비용, 용량, 성능 요구 사항에 최적화할 수 있도록 미디어 유형을 혼합한다. 기업이 플래시 없이는 최신 작업 부하의 성능 수요를 따라잡지 못할 위험이 있다는 주장은 다음과 같은 3가지 이유로 반박 가능하다. 첫째, 대부분의 최신 작업 부하에는 플래시가 제공하는 성능상의 이점이 필요하지 않다. 전 세계 데이터의 대부분은 클라우드와 대규모 데이터센터에 저장되어 있으며, 이러한 환경에서는 작업 부하 중 극히 일부에만 상당한 성능이 필요하다는 파레토 법칙을 따르고 있다. 둘째, 예산 제약이 있고 데이터 세트가 빠르게 증가하는 기업들은 성능뿐만 아니라 용량과 비용의 균형을 맞춰야 한다. 플래시 스토리지는 읽기 집약적인 시나리오에서는 탁월한 성능을 발휘하지만 쓰기 작업이 증가하면 내구성이 떨어져 오류 수정과 오버프로비저닝에 추가 비용이 발생한다. 또한, 대규모 데이터 세트나 장기 보존의 경우 영역 밀도가 증가하는 디스크 드라이브가 더 비용 효율적인 솔루션일 뿐만 아니라 수천 개의 하드 드라이브를 병렬로 활용하면 플래시를 보완하는 성능을 달성할 수 있다. 셋째, 수많은 하이브리드 스토리지 시스템은 다양한 미디어 유형의 강점을 단일 유닛에 원활하게 통합하고 최대한으로 활용할 수 있도록 세밀하게 조정된 소프트웨어 정의 아키텍처를 사용한다. 이러한 스토리지는 유연성을 제공하므로 기업은 지속적으로 변화하는 요구 사항에 따라 스토리지 구성을 조정할 수 있다. AFA와 SSD는 고성능의 읽기 집약적인 작업에 매우 적합하다. 하지만 하드 드라이브가 이미 훨씬 낮은 TCO로 제공하는 기능을 AFA로 불필요하게 비싼 방법으로 제공하는 것은 비용 효율적이지 않을 뿐만 아니라, AFA가 하드 드라이브를 대체할 수 있다고 주장하는 근거가 될 수 없다.
Seagate
“작지만 큰 영향력” 하드 드라이브의 나노 스케일 혁신
ⓒ Seagate 플래터당 3TB라는 전례 없는 드라이브 집적도를 자랑하는 새로운 하드 드라이브 플랫폼이 등장하며 디지털 시대의 새로운 이정표를 세웠다. 플래터당 3TB를 저장할 수 있다는 것은 동일한 면적에서 스토리지 용량을 기존 드라이브 대비 거의 두 배로 늘릴 수 있다는 것을 의미한다. 이러한 혁신은 데이터 스토리지의 미래와 데이터센터의 디지털 인프라에 괄목할 만한 영향을 미친다. AI의 발전과 함께 데이터의 가치가 그 어느 때보다 높아졌다. IDC에 따르면 2027년에는 전 세계에서 총 291ZB의 데이터가 생성될 것으로 예측되며, 이는 스토리지 제조 용량의 15배 이상일 것으로 보인다. 대부분의 데이터를 호스팅하는 대형 데이터 센터에 저장된 데이터 중 90%가 하드 드라이브에 저장된다. 즉, AI 애플리케이션의 주도로 데이터가 급증함에 따라 물리적 공간을 늘리지 않으면서도 데이터를 저장할 수 있는 스토리지 기술 혁신이 필요하다. 데이터 스토리지 인프라를 업그레이드하는 것은 단순히 기술적인 문제가 아니라 지금 시대가 직면한 규모, 총소유비용(TCO), 지속가능성이라는 과제에 대한 논리적 해답인 셈이다. 열 보조 자기 기록(HAMR) 기술은 선구적인 하드 드라이브 기술로 드라이브 집적도 향상을 위해 지난 20년 동안 수많은 연구를 거쳐 완성되어 왔다. 씨게이트 모자이크 3+ 플랫폼은 이러한 HAMR 기술을 씨게이트만의 방식으로 독특하게 구현한 것으로, 미디어(매체)부터 쓰기, 읽기 및 컨트롤러에 이르는 복잡한 나노 스케일 기록 기술과 혁신적인 재료 과학 역량을 집약한 결정체다. 이 플랫폼은 데이터 비트를 변환하고 자기 및 열 안정성을 유지하면서 더욱 촘촘하게 패킹해서 각 플래터에 훨씬 더 많은 데이터를 안정적이고 효율적으로 저장할 수 있다. 예를 들어, 기존 데이터센터에 있는 16TB 드라이브를 30TB 드라이브로 업그레이드하면 동일한 면적에서 스토리지 용량을 두 배로 늘릴 수 있다. 더 낮은 용량에서 업그레이드한다면 상승 폭은 더욱 커진다. 이 경우, 테라바이트당 전력 소비량이 40% 감소하는 등 스토리지 총소유비용(TCO)이 크게 개선된다. 또한 효율적인 자원 할당과 재활용 재료 사용으로 운영 비용을 절감하고 테라바이트당 탄소 배출량을 55% 감소시켜 데이터센터가 지속 가능성 목표를 달성할 수 있다. 드라이브 집적도 향상은 하이퍼스케일과 프라이빗 데이터센터의 판도를 바꿀 수 있다. 데이터센터가 급증하며 전력사용량과 탄소배출량 역시 늘어나 데이터센터의 지속가능성이 화두가 되고 있는 가운데, 과학기술정보통신부는 ‘탄소중립 기술혁신 추진전략-10대 핵심기술 개발방향’에서 2030년까지 데이터센터 전력소모량을 20% 절감하겠다고 밝힌 바 있다. 이러한 목표에 발맞춰, 집적도를 획기적으로 개선한 대용량 데이터 스토리지를 활용하는 것은 원활하고 지속적인 AI 모델 학습, 혁신 촉진 및 비즈니스 성공을 위해 필수적이다. 엔터프라이즈 데이터센터의 경우 제한된 공간, 전력, 예산에 맞춰 확장할 수 있는 지속 가능한 방법을 찾아야 한다. 하드 드라이브의 집적도 혁신은 점점 더 커져가는 클라우드 생태계와 AI 시대에 대응하는 해답이자, 동일한 공간에 더 많은 엑사바이트를 저장하면서도 자원 사용은 줄이도록 인프라를 확장할 수 있는 방법이다. 이는 글로벌 데이터 영역에서 경쟁력을 유지하고 글로벌 디지털 경제의 선두주자로서 입지를 강화하는 데 매우 중요하다.