빅데이터는 지속적인 데이터 유입으로 인해 거대해진다. 대용량 환경에서 데이터는 막대하게 유입되는 가운데서도 데이터 분석과 저장이 필요하다.
볼트DB(VoltDB)의 소프트웨어 아키텍트 존 허그는 단순히 데이터를 저장하고 차후에 분석하는 대신 아파치 카프카(Apache Kafka)와 같은 툴을 활용해 극도로 높은 유입률을 유지하면서도 데이터 통합 과정에서 분석을 수행할 수 있는 수준에 아마도 이르렀다고 생각했다.
- 폴 베네치아
비슷한 혁명이 이른바 패스트 데이터(fast data)와 함께 일어나고 있다. 빅데이터는 클릭-스트림 데이터, 금융 티커 데이터, 로그 데이터 집합, 센서 데이터 등 종종 엄청난 속도로 생성되는 데이터에 의해 만들어진다. 이런 이벤트들은 종종 초당 수천에서 수만 번씩 발생하곤 한다. 이런 유형의 데이터가 흔히들 '소방 호스(fire hose)'라고 불리는 것도 이해가 간다.
빅데이터의 소방호스에 대해 이야기할 때 그 데이터 볼륨은 데이터웨어하우스에서의 기가바이트, 테라바이트, 페타바이트 단위로 측정하지 않는다.
빅데이터에서는 데이터 볼륨을 시간 단위로 측정한다. 초당 몇 메가바이트, 시간당 몇 기가바이트, 혹은 하루당 몇 테라바이트 하는 식이다. 데이터 볼륨과 함께 속도도 이야기하는데, 이것이 바로 데이터웨어하우스와 빅데이터 간 핵심적인 차이다. 빅데이터는 그냥 큰 게 아니라 빠르기도 하다.
HDFS, 애널리틱 RDBMS, 혹은 플랫 파일에 이르기까지 빠르게 소방호스를 따라오는 새로운 데이터가 도착했을 때 즉각적으로 처리할 능력이 없어서 쌓아두게 된다면 빅데이터의 이점은 사라져 버린다.
소방호스는 능동 데이터, 즉각적인 상태, 혹은 현시적인 목표 없는 데이터를 대표한다. 반면 데이터웨어하우스는 히스토리 데이터를 훑어서 과거를 이해하고 미래를 예측하는 방법이다.
도착하는 데이터에 맞춰 행동하는 것은 상용 하드웨어상에서는 비용이 크고 거의 불가능에 가까울 정도로 비효율적이었다. 빅데이터의 가치처럼 패스트 데이터의 가치는 메시지 큐와 오픈소스 카프카(Kafka)와 스톰(Storm)과 같은 스트리밍 시스템의 리이미징된 이행과 오픈소스 NoSQL과 NewSQL 오퍼링과 데이터베이스의 리이미징된 이행을 통해 구현된다.
패스트 데이터에서 가치 잡기
들어오는 데이터에서 가치를 붙잡는 최선의 방법은 들어오는 즉시 반응하는 것이다. 자신이 배치로 들어오는 데이터를 처리한다면, 이미 시간이 뒤쳐진 것이고 가치도 상실한 셈이다.
초당 수천에서 수백만 이벤트 단위로 도달하는 데이터를 처리하기 위해서는 두 가지 기술이 필요하다. 우선 들어오는 속도로 이벤트를 전달할 수 있는 스트리밍 시스템과 들어오는 대로 각각의 아이템을 처리할 수 있는 데이터 스토어가 바로 그 두 가지다.
패스트 데이터의 딜리버리
인기 스트리밍 시스템인 아파치 스톰과 아파치 카프카 두 가지가 지난 몇 년 간 등장했다. 트위터의 엔지니어링 팀이 개발한 스톰은 초당 수백만 메시지에 달하는 데이터 스트리밍을 안정적으로 처리할 수 있다.
링크드인의 엔니지어링 팀이 개발한 카프카는 높은 처리율(high-throughput)의 분산형 메시지 큐(distributed Message Queue) 시스템이다. 두 스트리밍 시스템 모두 패스트 데이터 프로세싱의 필요성을 해결해준다. 하지만 카프카가 두드러진다.
카프카는 메시지 큐로 디자인해 기존 기술에서 나온 문제점을 해결했다. 카프카는 무한한 확장성, 분산 배치, 멀티테넌시(multitenancy), 강력한 지속성을 가진 우버(über)-큐의 일종으로 디자인됐다. 조직은 하나의 카프카 클러스터를 배치해 모든 메시지 큐 니즈를 충족할 수 있다. 여전히 카프카의 핵심은 메시지 딜리버리로, 어떠한 프로세싱이나 큐잉도 지원하지 않는다.
패스트 데이터 프로세싱
메시징은 솔루션의 한 부분에 불과하다. 전통적인 관계형 데이터베이스는 성능에 제한되기 마련이었다. 몇몇은 높은 비율로 데이터를 저장할 수 있지만 데이터가 소화되는 대로 이에 맞춰 인증, 강화, 행동하는 데는 기대에 미치지 못했다.
NoSQL 시스템이 클러스터링과 고성능을 해결했지만 동시에 전통적인 SQL 기반 시스템이 제공하던 힘과 안전성의 상당 부분을 포기해야 했다. 하지만 자신이 이벤트 단위로 복잡한 쿼리와 비즈니스 로직 작업을 처리한다면 인메모리 NewSQL 솔루션이 성능과 전통적인 복잡성 모두의 필요 기준을 충족시킬 수 있을 것이다.
카프카처럼 일부 NewSQL 시스템은 무공유 클러스터링을 중심으로 구축되어 있다. 로드는 성능을 위해 클러스터 노드들에 분산되어 있다. 데이터는 안정성과 가용성을 위해 클러스터 노드에 복제된다. 증가한 로드를 처리하기 위해 노드는 클러스터에 투명하게 추가할 수 있다.
노드는 제거될 수 있고 고장나더라도 나머지 클러스터는 계속해서 기능할 것이다. 데이터베이스와 메시지 큐 모두 단일 장애점(Single Point of Failure) 없이 디자인됐다. 이 기능들은 확장을 위해 설계된 시스템의 전형적인 특색이다.
이에 더해 카프카와 일부 NewSQL 시스템은 클러스터링과 다이나믹 토폴로지(dynamic topology)를 강력한 보장을 마다하지 않고도 확장에 활용할 능력이 있다. 카프카는 메시지-오더링 보장을 제공하는 반면 일부 인메모리 프로세싱 엔진은 직렬 가능(serializable)할 수 있는 지속성과 ACID 시멘틱을 제공한다.
두 시스템 모두 클러스터 인지 클라이언트를 활용해 더 많은 기능을 제공하거나 구성을 단순화한다. 마지막으로 둘 모두 RAID나 다른 로컬 스토리지 스키마보다는 각기 다른 장비 상의 디스크에 걸친 중복 내구성(redundant durability)을 달성한다.
빅데이터 패스트 처리를 위한 툴킷의 조건
빅데이터 소방호스 처리를 위한 시스템에서 원하는 것은 다음과 같다.
- 네이티브 무공유 클러스터링의 중복과 확장성 이점을 갖춘 시스템
- 노드당 높은 처리율을 달성하기 위한 인메모리 스토리지와 프로세싱에 기댄 시스템
- 섭취 시 프로세싱을 제공하는 시스템. 시스템이 조건부 로직을 수행할 수 있나? 시스템이 결정을 통지하기 위해 기가바이트 이상의 기존 상태 쿼리가 가능한가?
- 분리된 운영 시스템과 자체 작업에 대해 강력한 보증을 하는 시스템. 이를 통해 사용자들은 현재 문제나 데이터 분화(data divergence)을 처리하는 대신 더 단순한 코드를 작성하고 비즈니스 문제에 집중할 수 있다. 강력한 지속성을 제공하지만 이로 인해 성능이 크게 저하된 시스템에 주의하라.
이런 속성을 갖춘 시스템들이 NewSQL, NoSQL, 하둡 커뮤니티에서 등장하고 있지만, 각기 다른 시스템마다의 기본 조건에 따라 각기 다른 장단점이 있다. 실시간으로 패스트 데이터에 대응하고자 하는 조직에게 이런 툴은 고속 데이터를 이해하는데 연관된 복잡성 문제 상당수를 없애줄 수 있다.
카프카는 데이터를 수많은 제작자와 소비자 사이에 이동시키는 안전하고 고가용적인 방법과 관리자를 편안하기 해줄 오퍼링 성능과 튼튼함을 함께 제공한다. 인메모리 데이터베이스는 강력한 트랜젝셔널 로직(transactional logic), 계산(counting), 집합(aggregation)를 갖춘 온전한 관계형 엔진을 어떤 부하든 감당할 수 있는 충분한 확장성과 함께 제공할 수 있다. 관계형 데이터베이스 이상으로 이 시스템은 카프카의 메시징 인프라를 보완하기 위한 프로세싱 엔진 역할을 해야 한다.
자신의 조직이 필요한 게 무엇이든 이 툴들을 조합하면 종종 더 취약하고 이질적인 시스템을 대체함에 있어서도 작업을 더 빠르게 해주고 지금보다 더 많이 알게 해줄 것이다. editor@itworld.co.kr
함께 보면 좋은 콘텐츠
Sponsored
Seagate
'반박 불가' 하드 드라이브와 SSD에 관한 3가지 진실
ⓒ Getty Images Bank 하드 드라이브가 멸종할 것이라는 논쟁이 10년 넘게 계속되고 있다. 빠른 속도와 뛰어난 성능이 필요한 애플리케이션에 적합한 플래시 스토리지의 연매출이 증가하고 있는 것은 자명한 사실이다. 하지만, 클라우드의 보편화 및 AI 사용 사례의 등장으로 인해 방대한 데이터 세트의 가치가 높아지는 시대에 하드 드라이브는 플래시 스토리지로 대체할 수 없는 가치를 가지고 있다. 전 세계 엑사바이트(EB) 규모 데이터의 대부분을 저장하는 하드 드라이브는 데이터센터에서 그 어느 때보다 필수적이다. 전 세계 데이터 세트의 대부분이 저장된 엔터프라이즈 및 대규모 클라우드 데이터센터는 데이터 성장에서 핵심이 될 것이다. 하드 드라이브와 SSD를 비교하자면, 하드 드라이브 스토리지는 2022년에서 2027년 사이 6,996EB 증가할 것으로 예상되는 반면, SSD는 1,363EB 증가할 것으로 보인다. ⓒ Seagate 생성형 AI 시대에는 콘텐츠를 경제적으로 저장해야 하기 때문에 플래시 기술과 밀접하게 결합된 컴퓨팅 클러스터는 더 큰 하드 드라이브 EB의 다운스트림 수요를 직간접적으로 촉진할 것이다. 하드 드라이브가 왜 데이터 스토리지 아키텍처의 중심이 될 수밖에 없는지는 시장 데이터를 근거로 설명 가능하다. 가격 책정 근거 없는 믿음 : SSD 가격이 곧 하드 드라이브 가격과 같아질 것이다. 사실 : SSD와 하드 드라이브 가격은 향후 10년간 어느 시점에도 수렴하지 않을 것이다. 데이터가 이를 명확하게 뒷받침한다. 하드 드라이브는 SSD에 비해 테라바이트당 비용 면에서 확고한 우위를 점하고 있으며, 이로 인해 하드 드라이브는 데이터센터 스토리지 인프라의 확고한 주춧돌 역할을 하고 있다. IDC 및 포워드 인사이트(Forward Insights)의 연구에 따르면, 하드 드라이브는 대부분의 기업 업무에 가장 비용 효율적인 옵션으로 유지될 것으로 전망된다. 엔터프라이즈 SSD와 엔터프라이즈 하드 드라이브의 TB당 가격 차이는 적어도 2027년까지 6대 1 이상의 프리미엄이 유지될 것으로 예상된다. ⓒ Seagate 이러한 TB당 가격 차이는 장치 구입 비용이 총소유비용(TCO)에서 가장 큰 비중을 차지하는 데이터센터에서 특히 두드러지게 드러난다. 장치 구입, 전력, 네트워킹, 컴퓨팅 비용을 포함한 모든 스토리지 시스템 비용을 고려하면 TB당 TCO는 하드 드라이브 기반 시스템이 훨씬 더 우수하게 나타난다. ⓒ Seagate 따라서, 플래시는 특정 고성능 작업의 수행에 탁월한 스토리지이지만, 하드 드라이브는 당분간 안정적이고 비용 효율적이며 널리 채택된 솔루션을 제공하는 데이터센터에서 계속해서 주류로 사용될 것이다. 공급과 확장의 관계 근거 없는 믿음 : NAND 공급이 모든 하드 드라이브 용량을 대체할 정도로 증가할 수 있다. 사실 : 하드 드라이브를 NAND로 완전히 교체하려면 감당할 수 없는 설비투자(CapEx)가 필요하다. NAND 산업이 모든 하드 드라이브 용량을 대체하기 위해 공급을 빠르게 늘릴 수 있다는 주장은 재정적, 물류적으로 엄청난 비용이 발생한다는 점을 간과한 낙관적인 생각이다. 산업 분석기관 욜 인텔리전스(Yole Intelligence)의 2023년 4분기 NAND 시장 모니터 리포트에 따르면, 전체 NAND 산업은 2015년~2023년 사이 3.1제타바이트(ZB)를 출하하면서 총 매출의 약 47%에 해당하는 2,080억 달러의 막대한 자본 지출을 투자해야 했다. 반면, 하드 드라이브 산업은 데이터센터 스토리지 수요의 거의 대부분을 매우 자본 효율적인 방식으로 해결하고 있다. 씨게이트가 2015년~2023년 사이 3.5ZB의 스토리지를 출하하며 투자한 자본은 총 43억 달러로, 전체 하드 드라이브 매출의 약 5%에 불과하다. 그러나 NAND 산업의 경우 ZB당 약 670억 달러에 해당하는 금액을 투자한 것으로 나타나 하드 드라이브가 데이터센터에 ZB를 공급하는 것이 훨씬 더 효율적임을 알 수 있다. ⓒ Seagate 작업 부하 근거 없는 믿음 : 올 플래시 어레이(AFA)만이 최신 엔터프라이즈 작업 부하의 성능 요구를 충족할 수 있다. 사실 : 엔터프라이즈 스토리지 아키텍처는 일반적으로 디스크 또는 하이브리드 어레이, 플래시, 테이프를 사용하여 특정 작업 부하의 비용, 용량, 성능 요구 사항에 최적화할 수 있도록 미디어 유형을 혼합한다. 기업이 플래시 없이는 최신 작업 부하의 성능 수요를 따라잡지 못할 위험이 있다는 주장은 다음과 같은 3가지 이유로 반박 가능하다. 첫째, 대부분의 최신 작업 부하에는 플래시가 제공하는 성능상의 이점이 필요하지 않다. 전 세계 데이터의 대부분은 클라우드와 대규모 데이터센터에 저장되어 있으며, 이러한 환경에서는 작업 부하 중 극히 일부에만 상당한 성능이 필요하다는 파레토 법칙을 따르고 있다. 둘째, 예산 제약이 있고 데이터 세트가 빠르게 증가하는 기업들은 성능뿐만 아니라 용량과 비용의 균형을 맞춰야 한다. 플래시 스토리지는 읽기 집약적인 시나리오에서는 탁월한 성능을 발휘하지만 쓰기 작업이 증가하면 내구성이 떨어져 오류 수정과 오버프로비저닝에 추가 비용이 발생한다. 또한, 대규모 데이터 세트나 장기 보존의 경우 영역 밀도가 증가하는 디스크 드라이브가 더 비용 효율적인 솔루션일 뿐만 아니라 수천 개의 하드 드라이브를 병렬로 활용하면 플래시를 보완하는 성능을 달성할 수 있다. 셋째, 수많은 하이브리드 스토리지 시스템은 다양한 미디어 유형의 강점을 단일 유닛에 원활하게 통합하고 최대한으로 활용할 수 있도록 세밀하게 조정된 소프트웨어 정의 아키텍처를 사용한다. 이러한 스토리지는 유연성을 제공하므로 기업은 지속적으로 변화하는 요구 사항에 따라 스토리지 구성을 조정할 수 있다. AFA와 SSD는 고성능의 읽기 집약적인 작업에 매우 적합하다. 하지만 하드 드라이브가 이미 훨씬 낮은 TCO로 제공하는 기능을 AFA로 불필요하게 비싼 방법으로 제공하는 것은 비용 효율적이지 않을 뿐만 아니라, AFA가 하드 드라이브를 대체할 수 있다고 주장하는 근거가 될 수 없다.
Seagate
“작지만 큰 영향력” 하드 드라이브의 나노 스케일 혁신
ⓒ Seagate 플래터당 3TB라는 전례 없는 드라이브 집적도를 자랑하는 새로운 하드 드라이브 플랫폼이 등장하며 디지털 시대의 새로운 이정표를 세웠다. 플래터당 3TB를 저장할 수 있다는 것은 동일한 면적에서 스토리지 용량을 기존 드라이브 대비 거의 두 배로 늘릴 수 있다는 것을 의미한다. 이러한 혁신은 데이터 스토리지의 미래와 데이터센터의 디지털 인프라에 괄목할 만한 영향을 미친다. AI의 발전과 함께 데이터의 가치가 그 어느 때보다 높아졌다. IDC에 따르면 2027년에는 전 세계에서 총 291ZB의 데이터가 생성될 것으로 예측되며, 이는 스토리지 제조 용량의 15배 이상일 것으로 보인다. 대부분의 데이터를 호스팅하는 대형 데이터 센터에 저장된 데이터 중 90%가 하드 드라이브에 저장된다. 즉, AI 애플리케이션의 주도로 데이터가 급증함에 따라 물리적 공간을 늘리지 않으면서도 데이터를 저장할 수 있는 스토리지 기술 혁신이 필요하다. 데이터 스토리지 인프라를 업그레이드하는 것은 단순히 기술적인 문제가 아니라 지금 시대가 직면한 규모, 총소유비용(TCO), 지속가능성이라는 과제에 대한 논리적 해답인 셈이다. 열 보조 자기 기록(HAMR) 기술은 선구적인 하드 드라이브 기술로 드라이브 집적도 향상을 위해 지난 20년 동안 수많은 연구를 거쳐 완성되어 왔다. 씨게이트 모자이크 3+ 플랫폼은 이러한 HAMR 기술을 씨게이트만의 방식으로 독특하게 구현한 것으로, 미디어(매체)부터 쓰기, 읽기 및 컨트롤러에 이르는 복잡한 나노 스케일 기록 기술과 혁신적인 재료 과학 역량을 집약한 결정체다. 이 플랫폼은 데이터 비트를 변환하고 자기 및 열 안정성을 유지하면서 더욱 촘촘하게 패킹해서 각 플래터에 훨씬 더 많은 데이터를 안정적이고 효율적으로 저장할 수 있다. 예를 들어, 기존 데이터센터에 있는 16TB 드라이브를 30TB 드라이브로 업그레이드하면 동일한 면적에서 스토리지 용량을 두 배로 늘릴 수 있다. 더 낮은 용량에서 업그레이드한다면 상승 폭은 더욱 커진다. 이 경우, 테라바이트당 전력 소비량이 40% 감소하는 등 스토리지 총소유비용(TCO)이 크게 개선된다. 또한 효율적인 자원 할당과 재활용 재료 사용으로 운영 비용을 절감하고 테라바이트당 탄소 배출량을 55% 감소시켜 데이터센터가 지속 가능성 목표를 달성할 수 있다. 드라이브 집적도 향상은 하이퍼스케일과 프라이빗 데이터센터의 판도를 바꿀 수 있다. 데이터센터가 급증하며 전력사용량과 탄소배출량 역시 늘어나 데이터센터의 지속가능성이 화두가 되고 있는 가운데, 과학기술정보통신부는 ‘탄소중립 기술혁신 추진전략-10대 핵심기술 개발방향’에서 2030년까지 데이터센터 전력소모량을 20% 절감하겠다고 밝힌 바 있다. 이러한 목표에 발맞춰, 집적도를 획기적으로 개선한 대용량 데이터 스토리지를 활용하는 것은 원활하고 지속적인 AI 모델 학습, 혁신 촉진 및 비즈니스 성공을 위해 필수적이다. 엔터프라이즈 데이터센터의 경우 제한된 공간, 전력, 예산에 맞춰 확장할 수 있는 지속 가능한 방법을 찾아야 한다. 하드 드라이브의 집적도 혁신은 점점 더 커져가는 클라우드 생태계와 AI 시대에 대응하는 해답이자, 동일한 공간에 더 많은 엑사바이트를 저장하면서도 자원 사용은 줄이도록 인프라를 확장할 수 있는 방법이다. 이는 글로벌 데이터 영역에서 경쟁력을 유지하고 글로벌 디지털 경제의 선두주자로서 입지를 강화하는 데 매우 중요하다.