
많은 사람이 5G를 두려워한다. 이는 어제 오늘의 일이 아니다. 각각의 신기술에 대해 사람들은 각각의 다른 강한 반응이 있다. 증기 기관차를 반대한 사람들은 말을 타면서 제공되던 시속 40km보다 더 빠른 속도를 사람의 몸이 감당할 수 없다고 생각했기 때문이다.
한 쪽에서 시위자들은 외계인, 정부 음모, 모사드(Mossad)에 대한 터무니없는 음모론을 주장하고 있으며, 다른 한 쪽에서는 5G가 불임의 원인이 되고 뇌종양을 유발할 것이라고 말하고 있다.
진실은 그 사이 어딘가에 있다.
우리는 전자파와 관련한 위험이 있다는 걸 알고 있다. 그래서 안전 제한이 있다. 일반적으로 이런 제한은 효과가 있는 것으로 표시되는 신호 강도의 극히 일부에서 설정된다. 또한 기지국, 휴대전화 등 모든 기기는 제한에 의해 지정된 수치보다 훨씬 낮은 전력으로 작동한다.
이것은 전자파에 대한 우려 때문이 아니라, 전화기가 전력을 적게 사용할수록 배터리 수명이 늘어나기 때문이다. 예외가 있기도 하다. 최근 유명한 테스트에서 아이폰 11 프로가 허용되는 양의 2배 이상을 방출하는 것을 발견했다. 그러나 이 마저도 우려의 원인이 되서는 안된다.
5G를 두려워하는 많은 이유는 인간으로서 우리는 위험을 평가하는 데 매우 서툴기 때문이다. 휴가를 갈 때 막상 비행기 여행보다 공항으로 가는 자동차 속에서 다칠 가능성이 훨씬 높다. 사람들은 익숙한 것에는 위험은 낮추고 익숙치 않은 것에 대해서는 위험을 증폭시킨다.
그러나 5G를 사용하면 오랫동안 봤던 것보다 훨씬 더 높은 수준의 우려가 있는 것처럼 보이기 때문에 기술과 위험을 더 잘 이해할 가치가 있다.
과학이 말하는 5G는
전자파 영향에 관한 논문은 2만 4,000개가 넘는다. 회의론자들은 “위험이 없다면 왜 이렇게 많은 논문이 있는가”라고 말하고, 찬성론자들은 “모든 서류가 결정적인 증거가 될 수 없다”고 말한다. 이에 대해 사람들은 거의 항상 첫 번째 단락 내에서 자신이 어느 쪽에 놓여 있는지 결정할 수 있다. 두 번째 문장이 끝날 때쯤이면 자신이 어디에 서 있는지 알고 있다. 이런 견해는 사실을 무시하는 것이 아니다. 무선 전파뿐만 아니라 생물학과 역학 분야에서 연구를 살펴보고 전문가들과 대화하는 데 많은 시간을 보냈다.
이를 통해 알게 된 점은 전자파와 관련한 얘기는 어렵다는 것이다. 크게 본다면 모바일 기술의 사용이 증가함에 따라 곤충 개체 수의 감소와 남성 생식력 감소가 함께 한다는 것을 볼 수 있다.
그러나 상관 관계는 인과 관계가 아니며, 무선 전파 사용을 분리할 수 없는 상태에서 다른 무언가가 영향이 없다고 가정할 수 없다. 물론 페트리 접시 내에 세포를 전파에 노출시켜 어떤 일이 일어나는 지 확인할 수는 있다. 그러나 페트리 접시 안에서 일어나는 일을 실제 세계에서 일어나는 일에 반영하는 것은 악영향에 대처하기 위해 진화한 모든 종류의 메커니즘을 가진 유기체와 전체 시스템을 무시하는 것이다.
우리에게 필요한 것은 노출이 있는 사람의 대표 집단과 비슷한 삶을 살고 있지 않은 사람들의 두 번째 집단을 추적한 다음, 통계적으로 의미있는 두 집단 간의 건강 차이 목록을 만드는 것이다.
이를 코호트 연구(Cohort Study)라고 부르는 데, 지금 당장 어떤 일이 일어나고 있지만, 이제는 휴대전화를 사용하지 않는 사람들을 찾는 것이 불가능해졌다. 즉, 통제 그룹이 없다는 점은 연구 결과가 심각하게 평가절하된다는 걸 의미한다. 이런 관측 역학 연구는 미지의 지뢰밭이다. 어떤 일이 발생하는 것을 볼 수 있지만, 왜, 또는 종종 무슨 일이 일어나고 있는 지 판단하는 것은 불가능하다.
그래서 5G는 위험한가
불행히도 논쟁의 양쪽은 자신들의 주장을 뒷받침하기 위한 정보를 취사선택한다. 그래서 5G 업계는 신제품에 사용되는 모든 주파수가 잘 알려져 있다고 말하지만, 시위자들은 5G에서 해당 주파수에 대한 어떤 테스트도 수행하지 않았다고 말한다. 둘 다 맞는 얘기다. 업계에서는 5G에서 사용하는 무선 전파를 저대역(low band), 중대역(mid band), 고대역(high band)으로 나눈다. 1GHz 미만, 1G~6GHz 이상, 6GHz 이상(일반적으로 20G~30GHz)다(한국은 3.5Ghz 대역과 28Ghz 대역을 사업자들에게 할당했다).
NR(New Radio)로 알려진 5G 인코딩으로 이들을 사용하는 것은 사람과 동물에 대해 광점위하게 테스트되지 않았지만, 이 주파수의 영향에 대해 많이 알고 있다.
저대역은 1980년 대부터 휴대전화에 사용되던 것이다. 지구상의 많은 사람이 칫솔을 갖고 있는 것보다 휴대전화를 더 많이 소유하고 있다는 점을 고려할 때, 위험이 있다면 지금쯤 그 영향력에 대해 확실히 알고 있을 것이다.
중대역은 3G부터 대부분의 모바일 신호를 찾을 수 있는 곳이다. 다시 말하지만 이것들은 수십 년동안 사용되어 왔으며, 와이파이가 사용하는 주파수이기도 하다. 5G는 훨씬 낮은 전력 출력에서 이들을 사용한다.
고대역은 밀리미터 파(millimetre wave)라고도 하며, 이 대역이 쟁점이다. 이 고주파는 외부 방송 차량 같은 것을 기지국으로 연결하는 지점 간 통신이나 농촌 지역에서의 인터넷 연결, 위성 통신 등에 사용되기 때문에 이미 많은 경험이 있다.
이들은 신호를 한 지점에서 다른 지점으로 보낼 때 단단한 빔으로 유지하는 접시를 사용하는 경향이 있으므로 이런 주파수에 대한 사람들의 노출이 최소화된다. 그래서 다른 주파수와 같은 역학 정보를 갖고 있지 않다. 우리가 아는 것은 이 주파수가 거의 배치되지 않았다는 것이다. 그래서 조류와 곤충에 영향을 미치고 있다는 모든 이야기는 상관 관계를 이해하지 못한다.
영국에서는 현재 소비자 고대역 서비스가 없지만, 미국 버라이즌이 선호하는 기술이다. 이 사실을 알면 지금 5G 전화를 사야하는지 아니면 기다려야 하는 지 알고 싶을 것이다(한국에서는 대도시를 비롯한 거의 전국에 5G 기지국이 설치됐으며, 이미 사용 중이다. 편집자 주).
또한 신호가 약하다는 것도 알고 있다. 이 주파수가 유리를 뚫지만 벽을 관통하지 않으며, 물은 좋은 절연체이기 때문에 피부에도 어려움을 겪는다. 그래서 밀리미터 파를 뇌종양과 연결하는 물리학은 도전적이다.
5G가 사람을 죽일까? 확실하다고 말하는 사람을 만난다면 그들은 틀렸다. 이에 대한 증거가 없기 때문이다. 5G가 해를 끼칠 수 있다고 말할 수 있는가? 현재 수준으로는 안된다. 그렇다고 100% 안전하다고 말할 수 있는가? 아직 발견하지 못한 내용이 있을 수 있으므로 완전히 확실하진 않다.
석면과 흡연에 대한 얘기를 되돌아보면, 의심스러운 무언가가 있다는 징후가 있었다. 5G에는 이와 같은 이야기가 전혀 없다. 그래서 5G 마스트가 집 근처에 설치됐거나, 5G 전화를 사려한다면 그 위험을 이해하길 바라며, 많은 시위자가 주장하는 것만큼 나쁘지는 않다. editor@itworld.co.kr
함께 보면 좋은 콘텐츠
Sponsored
Intel
인텔이 12가지 가속기로 데이터센터에 확장성과 유연성을 추가하는 방법
ⓒ Getty Images Bank 사파이어 래피즈(Sapphire Rapids)라는 코드명으로 알려진 인텔의 4세대 제온 스케일러블 프로세서가 최근 출시됐다. 이 칩은 12가지 가속기로 주목받고 있지만 기능적인 흥미를 넘어 인텔이 급격하게 변화하는 데이터센터, 서버, 클라우드 시장에 대응하는 방법이 반영되어 있다는 점에 주목할 필요가 있다. 프로세서의 근본적인 역할은 연산에 있다. 프로세서는 여전히 연산을 빠르게 많이 할 수 있으면 좋다. 하지만 처리해야 하는 데이터의 종류와 특성이 다양해지면서 데이터를 다루는 방법도 진화했다. 그리고 이는 실질적인 성능의 향상으로 이어진다. 나승주 인텔 데이터센터 담당 상무는 4세대 제온 스케일러블 프로세서가 새로운 데이터센터 환경을 반영한다고 설명한다. ⓒ Intel “단순히 작동속도와 코어의 개수를 늘리는 것만이 최고의 가치를 주는 것은 아닙니다. 폭발적으로 증가하는 데이터센터 수요와 복잡한 데이터 처리에 대한 필요성을 풀어내기 위한 방법은 단순히 트랜지스터 수에만 의존할 일이 아니라 완전히 새로운 방법을 찾을 필요가 있습니다.” 인텔코리아 나승주 데이터센터 담당 상무는 데이터센터 환경이 달라지는 만큼 프로세서 구조도 새로 그려져야 한다고 설명한다. 그 관점에서 4세대 제온 스케일러블 프로세서는 이전과 다른 두 가지 전환점을 갖는다. 한 가지는 연산의 양적 증가, 다른 하나는 데이터 처리의 효율성이다. “모놀리식 아키텍처로는 소켓당 절대적 성능을 높이는 데에 한계가 있습니다. 이를 극복하기 위한 노력이 여전히 이어지고 있지만 단위 칩을 더 작게 만들고 효과적으로 연결하는 방법으로 성능 손실을 최소화하고 단일 칩에 준하는 처리 능력을 제공할 수 있습니다.” 최대 4개의 칩릿을 묶는 구조로 같은 공간 안에 더 많은 코어를 넣을 수 있다. ⓒ Intel 인텔은 사파이어 래피즈를 통해 ‘칩릿(Chiplet)’ 구조를 녹였다. 한정된 공간 안에 더 많은 코어를 넣는 것은 반도체 업계의 숙제였다. 제온 스케일러블 프로세서는 4개의 칩릿을 이어 붙여 최대 60개 코어를 쓴다. 칩릿 구조는 생산이 훨씬 쉬워지고 필요에 따라서 단일 칩부터 2개, 4개 등 필요한 만큼 이어 붙여 다양한 설계의 자유도를 제공하기도 한다. 핵심 기술은 칩과 칩 사이를 손실없이 연결하는 데에 있다. “중요한 것은 인터페이스와 패키징 기술입니다. 사실 이 칩릿 구조는 인텔만의 고민은 아닙니다. 반도체 업계, 그리고 더 나아가 산업 전체의 숙제이기 때문에 이를 공론화해서 업계가 함께 답을 찾아가는 중입니다.” 나승주 상무는 기술 개방과 표준에 해결책이 있다고 말했다. UCIe(Universal Chiplet Interconnect Express) 컨소시엄을 통해 전 세계 반도체 관련 기업들이 경쟁을 내려놓고 답을 찾아가고 있다. UCIe는 단순히 코어와 코어를 연결하는 수준이 아니라 단일 패키지 안에서 GPU도, 컨트롤러도, 또 가속기도 성능 손실을 최소화하면서 이어붙일 수 있다. 성능의 확장 뿐 아니라 단순화된 칩들을 자유롭게 맞붙이는 설계의 자유도 얻게 된다. ⓒ Intel 이 모듈형 칩릿 구조를 적극적으로 활용하는 또 하나의 방법이 바로 12가지 가속기다. 데이터의 특성에 맞는 처리 방법은 점점 중요해지고 있다. 인텔은 오래 전부터 MMX(Multi Media eXtension)와 SSE(Streaming SIMD eXtensions)를 비롯해 AVX(Advanced Vector Extensions)와 최근에는 AMX (Advanced Matrix Extensions) 까지 데이터를 효과적으로 처리하는 기술을 발전시켜 왔다. 사파이어 래피즈의 가속기는 프로세서를 현대 데이터센터의 필요에 맞춰 최적화할 수 있는 방법이라는 것이 나승주 상무의 설명이다. “클라우드는 가상머신과 네트워크는 물론이고, 암호화와 인공지능 처리까지 더욱 복잡해지기 때문에 기업은 설계의 고민이 많습니다. 클라우드에서 GPU의 활용도가 높아지고 있는 것은 사실이지만 머신러닝의 학습과 추론 작업의 80%가 CPU에서 이뤄지고 있습니다. 프로세서가 이를 받아들일 필요가 있습니다.” AMX(Advanced Matrix Extensions)가 더해진 이유도 막대한 실시간 학습 데이터가 필요하지 않은 상황에서 범용적인 인공지능 학습이 CPU만으로 충분히 빠르게 이뤄질 수 있도록 하기 위해서다. AMX는 텐서플로와 파이토치 등 범용적인 머신러닝 프레임워크에 최적화되어 기존 환경을 그대로 가속한다. 12가지 가속기를 통해 데이터센터의 특성에 맞는 서버를 구성할 수 있다. ⓒ Intel 마찬가지로 데이터센터에서 큰 리소스를 차지하는 암호화 효율을 높여주는 QAT(QuickAssist Technology), 로드밸런싱을 맡는 DLB(Dynamic Load Balancer), 인메모리 분석 처리를 가속하는 IAA(In-Memory Analytics Accelerator), 데이터 스트리밍을 가속하는 DSA(Data Streaming Accelerator) 등 별도의 전용 가속 코어를 두고, 필요에 따라서 가속기를 선택할 수 있도록 했다. 그리고 이는 데이터센터의 자원 관리에 직접적으로 영향을 끼치게 된다. “가속기가 실제 현장에서 주는 가치는 특정 리소스를 빠르게 처리하는 것도 있지만 특정 처리에 대한 부담을 덜어 CPU가 본래 해야 할 연산에 집중하는 것입니다. 데이터센터에서 70개 코어를 할당해서 쓰던 암호화가 사파이어 래피즈의 QAT 가속기를 이용하면 11개 코어로 충분합니다. 나머지는 실제로 데이터센터가 처리해야 하는 인스턴스에 할당되면서 자원의 효율이 크게 높아집니다.” ⓒ Intel 4세대 제온 스케일러블 프로세서는 구조의 변화와 가속기를 통해서 ‘스케일러블(Scalable)’이라는 이름이 어울리는 확장성을 갖게 됐다. 이는 곧 데이터센터의 최적화, 그리고 유연성과도 연결된다. 반도체는 시대의 흐름을 읽어야 하고, 인텔은 사파이어 래피즈를 통해 기술로 그 답을 제시하고 있다.
Intel
데이터센터 성능을 재정의하는 게임 체인저 ‘4세대 인텔® 제온® 스케일러블 프로세서’
ⓒ Getty Images Bank AI, HPC, 첨단 분석 등 새로운 유형의 워크로드가 급부상하면서 데이터센터의 성능에 대한 재정의가 필요한 시대가 되었다. 이런 시대적 요구에 부응하기 위해 인텔은 4세대 제온 스케일러블 프로세서(코드명 사파이어 래피즈)라는 답을 내놓았다. 인텔은 이전 세대에 비해 성능, 확장성 및 효율성을 크게 개선한 4세대 제온 스케일러블 프로세서로 차세대 데이터센터에 대한 인텔의 전략을 구체화하고 있다. 성능 최적화의 새로운 관점 ‘워크로드 최적화’ 4세대 제온 스케일러블 프로세서는 ‘다양한 워크로드 각각의 요구에 맞는 최대 성능을 끌어 낸다’라는 한 줄로 핵심을 짚을 수 있다. 이 프로세서의 설계 사상은 AI, HPC, 첨단 분석 등 다양한 워크로드의 요구사항을 충족하기 위해 CPU 및 관련 기술을 설계하고 최적화하는 것이다. 최근 기업들이 주목하는 주요 워크로드는 각각 성능에 대한 요구와 기준이 다르다. 예들 들어 AI 워크로드는 매트릭스 연산과 병렬 처리에 크게 의존한다. 더불어 대용량 데이터 세트를 처리해야 하는 경우가 많아 CPU와 메모리 간의 효율적인 데이터 전송을 위해 높은 메모리 대역폭이 필요하다. AI 워크로드에 맞는 최고의 성능을 제공하기 위해 인텔은 4세대 제온 스케일러블 프로세서에 고급 매트릭스 확장(AMX)과 같은 특수 명령어 세트와 통합 가속기를 내장하였다. 이는 꽤 주목할 개선이다. AMX의 내재화는 CPU도 AI 처리가 준비됐다는 것을 뜻한다. 이는 AI 인프라에서 CPU의 역할을 크게 확장할 전망이다. 최근 ChatGPT의 등장과 함께 모든 기업의 관심사가 된 초거대 언어 모델 기반 생성형 AI 전략 수립에 있어 AMX에 관심을 두는 곳이 늘고 있는 것도 같은 맥락에서 이해할 수 있다. HPC 워크로드는 복잡한 수학적 계산이 포함되며 높은 부동소수점 성능을 보장해야 한다. HPC 워크로드에는 병렬 처리가 수반되는 경우가 많다. 멀티코어 CPU는 이러한 워크로드를 가속하는 데 있어 핵심이라 할 수 있다. 또한, 대규모 HPC 시뮬레이션은 효율적인 데이터 처리를 위해 높은 메모리 용량과 대역폭도 요구한다. 이런 특수성도 4세대 제온 스케일러블 프로세서는 유연하게 수용한다. 4세대 제온 스케일러블 프로세서는 최대 8채널 DDR5 메모리 구성 및 인텔 옵테인 퍼시스턴트 메모리(Optane Persistent Memory)를 지원하여 HPC 시뮬레이션을 위한 높은 메모리 용량과 대역폭을 제공한다. 또한, PCIe 5.0을 지원하여 PCIe 4.0의 두 배에 달하는 대역폭을 제공하여 CPU와 가속기 및 스토리지와 같은 기타 장치 간의 통신 속도가 빠르다. QAT를 통해 암호화 및 압축 워크로드를 가속화하여 네트워킹 및 스토리지와 같은 애플리케이션의 성능과 효율성도 크게 높인다. 열거한 특징들은 HPC뿐 아니라 AI 워크로드의 성능 요구에도 부합한다. 다음으로 첨단 분석의 경우 적시에 통찰력을 제공하고 빠른 의사결정을 지원하려면 지연 시간을 최소화하면서 데이터를 빠르게 처리할 수 있는 CPU가 필요하다. 인텔은 단일 스레드 성능 및 멀티 스레딩 기능을 향상시켜 실시간 분석을 위한 저지연 처리를 가능하게 한다. 그리고 인텔 프로세서는 최적화된 캐시 계층 구조를 갖추고 있어 메모리 액세스 시간을 최소화하여 실시간 분석 워크로드의 지연 시간을 줄이고 성능을 개선할 수 있다. 여기에 4세대 제온 스케일러블 프로세서는 넓은 메모리 대역폭으로 데이터베이스 성능을 향상하고 인텔 인-메모리 분석 가속기(IAA), 데이터 이동 속도를 높이는 인텔 데이터 스트리밍 가속기(DSA)까지 통합하여 실시간 데이터 처리 성능을 높였다. 요약하자면 워크로드마다 특화된 CPU 기능, 아키텍처 또는 가속기가 필요한 요구사항이 다르다. AI 워크로드는 가속 기술과 넓은 메모리 대역폭의 이점을 누리고, HPC 워크로드는 높은 부동소수점 성능과 병렬 처리가 필요하며, 실시간 분석 워크로드는 지연 시간이 짧은 처리와 효율적인 I/O 및 스토리지가 필요하다. 4세대 제온 스케일러블 프로세서는 다양한 워크로드의 성능 요구를 수용하여 각각 최대의 성능을 끌어 낸다. 워크로드 최적화 성능 추구가 가능한 이유 CPU의 발전사를 보면 무어의 법칙의 시대를 지나 멀티 코어의 시기가 이어지고 있다. 멀티 코어는 현재 진화를 거듭 중인데 최근 동향은 더 나은 성능과 에너지 효율성을 보장하는 가운데 워크로드별 최적화를 지원하는 것이다. 이를 실현하기 위해 인텔은 코어 수를 늘리는 가운데 다양한 가속기를 CPU에 통합하는 방식을 택하였다. 이런 노력의 결과물이 4세대 제온 스케일러블 프로세서다. 멀티코어 아키텍처는 병렬 처리를 가능하게 하여 성능과 에너지 효율을 높인다. 예를 들어 인텔의 제온 스케일러블 프로세서는 최대 60개의 코어를 가지고 있어 AI, HPC, 실시간 분석 등 다양한 워크로드 처리에 이상적이다. 여기에 다양한 가속기를 통합하여 워크로드마다 차이를 보이는 최적의 성능 목표 달성에 한걸음 더 가까이 다가서고 있다. 또한, 4세대 제온 스케일러블 프로세서는 CPU와 가속기 간의 고속 통신을 위해 설계된 개방형 산업 표준 인터커넥트인 컴퓨트 익스프레스 링크(CXL)를 지원한다. 이 밖에도 인텔은 상호 연결 및 효율적인 전력 공급을 위해 4개의 실리콘 다이를 EMIB(Embedded Multi-Die Interconnect Bridge)라는 고급 패키징 기술로 연결했다. 인텔의 EMIB 기술은 CPU 설계 및 패키징의 패러다임 전환을 잘 보여준다. 인텔은 프로세서를 타일이라고 하는 더 작은 모듈식 구성 요소로 분할하고 EMIB라는 작은 실리콘으로 연결하여 하나의 Monolithic 구조와 같은 성능, 에너지 효율성 및 설계 유연성을 높였고 그 결과물이 4세대 제온 스케일러블 프로세서다. 인텔은 고급 패키징 기술을 통해 다양한 가속기를 통합하면서도 높은 전력 효율을 달성했다. 가령 4세대 인텔 제온 스케일러블 프로세서가 내장된 가속기를 사용하면 이전 세대 대비 워크로드 처리에 있어 평균 2.9배 높은 와트당 성능 목표 달성이 가능하다. 더 자세히 알아보면 범용 컴퓨팅에서 53% 평균 성능 향상을 기대할 수 있고, AI는 최대 10배 높은 추론과 학습 성능, 네트워킹과 스토리지 분야에서는 95% 적은 코어로 더 높은 데이터 압축 성능을 보여 최대 2배 성능을 높일 수 있고, 데이터 분석의 경우 최대 3배 성능 개선이 가능하다. 달라진 게임의 법칙 4세대 제온 스케일러블 프로세서의 등장으로 차세대 데이터센터 시장을 놓고 벌이는 다양한 프로세서 간 새로운 경쟁이 본격화될 전망이다. 4세대 제온 스케일러블 프로세서는 단순한 신제품이 아니다. 다양한 워크로드의 급변하는 요구 사항을 해결하고 성능, 확장성 및 효율성에 중점을 둔 차세대 데이터센터 구축에 대한 인텔의 전략을 상징한다. 4세대 제온 스케일러블 프로세서는 반도체 시장의 게임의 법칙은 시대의 흐름에 따라 바뀐다는 것을 보여주는 산증인이다.