이상적인 미래를 상상해 보면 AI 가상 비서는 우리가 무엇을 하는지, 어디로 가는지,
그리고 무엇보다 무슨 말을 하는지를 이해한다. 다른 여러 가지에 대해서도 안다. 도움이 필요한 상황임을 감지하면 적절한 제안이나 아이디어, 팩트를 속삭여준다. 사실상 하루 종일 실시간 지식을 제공하게 된다.
주차장에서 회의 장소로 향할 때면 묻지 않아도 회의실까지 가는 길을 안내해준다. 회의에 앞서 상대방과 악수를 할 때 (다른 사람에게는 들리지 않게) 상대방을 4년 전에 컨퍼런스에서 만난 적이 있음을 상기시켜 준다. 회의 중에는 질문을 듣고 답을 알려준다.
상대방이 “이 건에 대해서는 10월에 만나서 이야기합시다”라고 이야기하면 가상 비서는 10월에 출장이 잡혀 있음을 알려준다. 그러면 날짜를 조정해 11월로 제안할 수 있다.
이 미래의 현실화를 지연시키는 요소는 두 가지다. 첫 번째는 가상 비서와 AI가 아직 그 정도로 좋지 않다는 것이고, 두 번째는 가상 비서를 만드는 기업이 종일 자신의 일거수일투족을 “염탐”하는 상황을 대중이 아직 받아들일 준비가 되지 않았다는 것이다.

구글과 페이스북은 이 가지 지연 요소를 해결하기 위한 작업을 진행 중이다.
구글의 제안 AI
이번 주 구글은 알로(Allo) 메시징 앱의 크롬 웹 브라우저 버전을 공개했다.
각 알로 계정은 특정 전화 번호와 연결되고 그 번호를 사용하는 스마트폰에서 화면 QR 코드로 브라우저 버전의 유효성을 확인해야 한다. 현재는 안드로이드 폰만 유효성 확인이 가능하지만 구글은 곧 아이폰 버전도 가능하게 된다고 밝혔다. (웹 버전을 활성화하려면 여기로 이동)
브라우저 버전은 단순히 폰의 알로에 대한 인터페이스 역할을 할 뿐이다. 폰이 고장나거나 오프라인 상태가 되거나 사용자가 모바일 앱을 제거하면 브라우저 버전은 사용할 수 없게 된다. 한 번에 하나의 브라우저 세션에만 로그인할 수 있다.
알로는 예를 들어 “스티커”를 제공하는 등 일반적인 채팅 앱의 성격도 있지만 두 가지 형태의 “제안” AI를 사용한다.
사용자가 선택할 법한 대답을 신경망을 사용해 추측하는 구글의 “스마트 대답(Smart Reply)” 기능은 알로와 구글 인박스에서 모두 작동한다. 스마트 대답은 사용자가 하는 말을 듣고 관련성 높은 제안(물론 어떻게 대답할지에 대한 제안)을 제시한다.
가상 비서 플랫폼인 구글 어시스턴트도 알로를 통해 사용 가능하다. 구글 홈 기기에
이야기하듯이 명령과 쿼리를 입력하기만 하면 된다. 구글의 자체 안드로이드 스마트폰인 픽셀과 마찬가지로 홈도 구글 어시스턴트를 실행한다. 알로 웹 버전을 통해 구글 어시스턴트를 웹에서 사용할 수 있게 됐지만 어시스턴트 웹 버전은 타사 앱 통합을 지원하지 않는다.
알로의 구글 어시스턴트(및 새로운 데스크톱 브라우저 버전)에서 가장 흥미로운 점은 어시스턴트가 채팅 대화를 “주시”하고 종종 이것저것을 제안한다는 것이다. 예를 들어 피자에 대한 대화를 시작하면 가까운 피자 매장을 제안한다.
“제안” AI를 입력 방식의 채팅 환경에 배치한 것은 구글의 AI 개선 작업에 도움이 되지만 개인정보 보호에 관한 우려를 완화하는 역할도 한다. 입력 방식의 채팅은 실제 대화를 듣고 그 들은 내용을 기반으로 제안하는 방식보다 개인정보 보호 측면에서 좀더 안전하게 느껴지기 때문이다.
“제안” A.I.를 개발하는 업체는 구글 외에도 있다.
페이스북의 ‘제안’ AI
페이스북 메신저의 최신 기능은 M 제안(M Suggestions)이다.
대부분의 기사, 심지어 페이스북의 발표에서도 “M”과 “M 제안”을 혼동한다. M은 아직 출시되지 않은 실험적 AI 가상 비서 프로젝트고, M 제안은 대부분의 영어 및 스페인어 사용 국가에 출시된 페이스북 메신저의 기능이다.
명확히 설명하자면 M은 AI가 방대한 규모의 사회적 상호작용을 강화 또는 증강하는 데 어떻게 도움이 될 수 있을지를 연구하는 포괄적인 프로젝트에 가깝다.
M 도움말 페이지를 방문해서 “M을 사용하려면(How can I use M)” 링크를 클릭하면 “M은 아직 귀하의 지역에서 사용할 수 없습니다. 사용할 수 있게 되면 메신저 앱으로 알려드리겠습니다”라는 내용의 메시지가 표시된다. 극소수 선정된 사용자만 M 실험에 참여 중이다. 페이스북 M은 어떤 국가에서도 아직 일반에 공개되지 않았다.
미국, 영국, 캐나다, 남아프리카공화국, 오스트레일리아, 스페인, 멕시코에서 페이스북 메신저를 사용하는 모든 사람이 자동으로 M을 이용할 수 있는 것은 아니지만 이곳 사용자들은 M 제안을 이용할 수 있다.
M 실험과 달리 M 제안은 위 국가에서 두 가지 언어(영어와 스페인어)로 출시된 페이스북 메신저의 “현행” 기능이다.
M 제안은 메신저 대화를 저장하도록 충고하거나, 누군가의 생일이 되면 “생일 축하” 인사를 해야 함을 상기시킬 수 있다.
이러한 선제적 제안은 데이터를 기반으로 하며 그 외의 제안은 사용자의 대화를 기반으로 한다. 예를 들어 “전화하고 싶니?”라고 말하면 M 제안은 전화 걸기를 제안한다. M 제안은 송금, 위치 공유, 만남, 설문 투표, 리프트(Lyft) 또는 우버(Uber) 호출을 제안할 수 있다. 이러한 제안은 모두 대화를 기반으로 한다.
최신 M 제안은 사용자가 음악에 관해 대화할 경우 스포티파이(Spotify)를 통해 음악도 제안한다.
M 제안은 채팅을 “도청”한다(모두 텍스트이므로 엄밀히 말해 “듣는 것”은 아님). 블룸버그의 이달 초 신뢰할 만한 보도에 따르면 페이스북은 아마존 에코와 비슷하며 아마도 페이스북 M 제안을 실행할 가상 비서 어플라이언스 제품을 최소 두 개 이상 개발 중이다. 이 제품이 나온다면 실제로 대화 내용을 듣다가 컴퓨터 음성으로 중간에 끼어들 수도 있다. (물론 소문을 근거로 한 이야기일 뿐이지만 “스티브에게 전화 걸어”라고 지시하면 “네, 스티브에게 전화를 겁니다. 스티브에게 생일 축하 인사하는 것 잊지 마세요!”라고 대답하는 페이스북의 홈 어플라이언스를 상상하기는 어렵지 않다.)
소문의 페이스북 어플라이언스 버전 중 하나는 사용자가 오디오 또는 비디오를 통해 대화
중일 때 소리없이 제안을 표시할 수 있는 화면을 갖추고 있다.
페이스북은 소셜 네트워킹 기업으로 더 원활한 소셜 상호작용을 위해 더 큰 규모의 M 실험, 그리고 M 제안 두 가지 모두에 집중하고 있다. 핵심은 지식이나 생산성이 아니라 커뮤니케이션이다.
제안 AI를 위한 세 가지 제안
아마존은 현재 여러 가지 버전의 에코 가상 비서 어플라이언스를 만들고 있다. 구글 홈 어플라이언스는 전화 기능을 한다. 애플 홈패드 어플라이언스는 12월에 출하된다. 소문에 의하면 페이스북도 두 개 이상의 가상 비서 어플라이언스를 개발 중이다.
올해 말까지 가상 비서 어플라이언스는 의심할 여지 없이 “주류” 제품 범주로 부상할 것이다.
이제 세 가지 변화가 필요하다.
첫째, 사무실 전화를 대체하는 비즈니스 버전의 가상 비서 어플라이언스가 필요하다. 필자가 지난 5월에 자세히 다룬 적이 있는 아이디어다.
둘째, “제안” 기능은 이러한 기기의 일부로 속해야 한다. 즉, 대화에서 트리거 “키워드”만 듣는 것이 아니라 항상 모든 것을 듣고 기회가 있을 때 제안을 하는 것이다. 비즈니스 어플라이언스의 경우 소리 없이 화면에 조용히 표시되어야 하고 일정, 연락처 및 기타 사용자 데이터에 접근할 수 있어야 한다. 또한 회사 애플리케이션 데이터에도 접근이 가능하도록 효과적인 API도 갖추어야 한다.
셋째, “제안” AI는 스마트폰 가상 비서의 일부로도 포함되어야 한다. 무선 이어버드는 상황과 대화를 바탕으로 제안을 하는 가상 비서와의 지속적인 상호작용을 위한 하드웨어 인터페이스가 된다.
물론 개인정보 보호 문제가 있다. 그러나 개인정보 보호에 대한 우려가 기술 개발을 막는 요소가 되어서는 안 된다. 이러한 “제안” 기능을 갖춘 AI 가상 비서를 만드는 기업들에 강력한 데이터 보호 보장책을 요구해야 한다. 가능한 일이며 필요한 일이다.
AI “제안”의 혜택은 비즈니스 상호작용을 포함한 사람들 일상의 모든 요소를 향상시켜 줄 것이다.
구글과 페이스북은 맞는 길을 가고 있다. 더욱 분발해야 한다. editor@itworld.co.kr
함께 보면 좋은 콘텐츠
Sponsored
Intel
데이터센터 성능을 재정의하는 게임 체인저 ‘4세대 인텔® 제온® 스케일러블 프로세서’
ⓒ Getty Images Bank AI, HPC, 첨단 분석 등 새로운 유형의 워크로드가 급부상하면서 데이터센터의 성능에 대한 재정의가 필요한 시대가 되었다. 이런 시대적 요구에 부응하기 위해 인텔은 4세대 제온 스케일러블 프로세서(코드명 사파이어 래피즈)라는 답을 내놓았다. 인텔은 이전 세대에 비해 성능, 확장성 및 효율성을 크게 개선한 4세대 제온 스케일러블 프로세서로 차세대 데이터센터에 대한 인텔의 전략을 구체화하고 있다. 성능 최적화의 새로운 관점 ‘워크로드 최적화’ 4세대 제온 스케일러블 프로세서는 ‘다양한 워크로드 각각의 요구에 맞는 최대 성능을 끌어 낸다’라는 한 줄로 핵심을 짚을 수 있다. 이 프로세서의 설계 사상은 AI, HPC, 첨단 분석 등 다양한 워크로드의 요구사항을 충족하기 위해 CPU 및 관련 기술을 설계하고 최적화하는 것이다. 최근 기업들이 주목하는 주요 워크로드는 각각 성능에 대한 요구와 기준이 다르다. 예들 들어 AI 워크로드는 매트릭스 연산과 병렬 처리에 크게 의존한다. 더불어 대용량 데이터 세트를 처리해야 하는 경우가 많아 CPU와 메모리 간의 효율적인 데이터 전송을 위해 높은 메모리 대역폭이 필요하다. AI 워크로드에 맞는 최고의 성능을 제공하기 위해 인텔은 4세대 제온 스케일러블 프로세서에 고급 매트릭스 확장(AMX)과 같은 특수 명령어 세트와 통합 가속기를 내장하였다. 이는 꽤 주목할 개선이다. AMX의 내재화는 CPU도 AI 처리가 준비됐다는 것을 뜻한다. 이는 AI 인프라에서 CPU의 역할을 크게 확장할 전망이다. 최근 ChatGPT의 등장과 함께 모든 기업의 관심사가 된 초거대 언어 모델 기반 생성형 AI 전략 수립에 있어 AMX에 관심을 두는 곳이 늘고 있는 것도 같은 맥락에서 이해할 수 있다. HPC 워크로드는 복잡한 수학적 계산이 포함되며 높은 부동소수점 성능을 보장해야 한다. HPC 워크로드에는 병렬 처리가 수반되는 경우가 많다. 멀티코어 CPU는 이러한 워크로드를 가속하는 데 있어 핵심이라 할 수 있다. 또한, 대규모 HPC 시뮬레이션은 효율적인 데이터 처리를 위해 높은 메모리 용량과 대역폭도 요구한다. 이런 특수성도 4세대 제온 스케일러블 프로세서는 유연하게 수용한다. 4세대 제온 스케일러블 프로세서는 최대 8채널 DDR5 메모리 구성 및 인텔 옵테인 퍼시스턴트 메모리(Optane Persistent Memory)를 지원하여 HPC 시뮬레이션을 위한 높은 메모리 용량과 대역폭을 제공한다. 또한, PCIe 5.0을 지원하여 PCIe 4.0의 두 배에 달하는 대역폭을 제공하여 CPU와 가속기 및 스토리지와 같은 기타 장치 간의 통신 속도가 빠르다. QAT를 통해 암호화 및 압축 워크로드를 가속화하여 네트워킹 및 스토리지와 같은 애플리케이션의 성능과 효율성도 크게 높인다. 열거한 특징들은 HPC뿐 아니라 AI 워크로드의 성능 요구에도 부합한다. 다음으로 첨단 분석의 경우 적시에 통찰력을 제공하고 빠른 의사결정을 지원하려면 지연 시간을 최소화하면서 데이터를 빠르게 처리할 수 있는 CPU가 필요하다. 인텔은 단일 스레드 성능 및 멀티 스레딩 기능을 향상시켜 실시간 분석을 위한 저지연 처리를 가능하게 한다. 그리고 인텔 프로세서는 최적화된 캐시 계층 구조를 갖추고 있어 메모리 액세스 시간을 최소화하여 실시간 분석 워크로드의 지연 시간을 줄이고 성능을 개선할 수 있다. 여기에 4세대 제온 스케일러블 프로세서는 넓은 메모리 대역폭으로 데이터베이스 성능을 향상하고 인텔 인-메모리 분석 가속기(IAA), 데이터 이동 속도를 높이는 인텔 데이터 스트리밍 가속기(DSA)까지 통합하여 실시간 데이터 처리 성능을 높였다. 요약하자면 워크로드마다 특화된 CPU 기능, 아키텍처 또는 가속기가 필요한 요구사항이 다르다. AI 워크로드는 가속 기술과 넓은 메모리 대역폭의 이점을 누리고, HPC 워크로드는 높은 부동소수점 성능과 병렬 처리가 필요하며, 실시간 분석 워크로드는 지연 시간이 짧은 처리와 효율적인 I/O 및 스토리지가 필요하다. 4세대 제온 스케일러블 프로세서는 다양한 워크로드의 성능 요구를 수용하여 각각 최대의 성능을 끌어 낸다. 워크로드 최적화 성능 추구가 가능한 이유 CPU의 발전사를 보면 무어의 법칙의 시대를 지나 멀티 코어의 시기가 이어지고 있다. 멀티 코어는 현재 진화를 거듭 중인데 최근 동향은 더 나은 성능과 에너지 효율성을 보장하는 가운데 워크로드별 최적화를 지원하는 것이다. 이를 실현하기 위해 인텔은 코어 수를 늘리는 가운데 다양한 가속기를 CPU에 통합하는 방식을 택하였다. 이런 노력의 결과물이 4세대 제온 스케일러블 프로세서다. 멀티코어 아키텍처는 병렬 처리를 가능하게 하여 성능과 에너지 효율을 높인다. 예를 들어 인텔의 제온 스케일러블 프로세서는 최대 60개의 코어를 가지고 있어 AI, HPC, 실시간 분석 등 다양한 워크로드 처리에 이상적이다. 여기에 다양한 가속기를 통합하여 워크로드마다 차이를 보이는 최적의 성능 목표 달성에 한걸음 더 가까이 다가서고 있다. 또한, 4세대 제온 스케일러블 프로세서는 CPU와 가속기 간의 고속 통신을 위해 설계된 개방형 산업 표준 인터커넥트인 컴퓨트 익스프레스 링크(CXL)를 지원한다. 이 밖에도 인텔은 상호 연결 및 효율적인 전력 공급을 위해 4개의 실리콘 다이를 EMIB(Embedded Multi-Die Interconnect Bridge)라는 고급 패키징 기술로 연결했다. 인텔의 EMIB 기술은 CPU 설계 및 패키징의 패러다임 전환을 잘 보여준다. 인텔은 프로세서를 타일이라고 하는 더 작은 모듈식 구성 요소로 분할하고 EMIB라는 작은 실리콘으로 연결하여 하나의 Monolithic 구조와 같은 성능, 에너지 효율성 및 설계 유연성을 높였고 그 결과물이 4세대 제온 스케일러블 프로세서다. 인텔은 고급 패키징 기술을 통해 다양한 가속기를 통합하면서도 높은 전력 효율을 달성했다. 가령 4세대 인텔 제온 스케일러블 프로세서가 내장된 가속기를 사용하면 이전 세대 대비 워크로드 처리에 있어 평균 2.9배 높은 와트당 성능 목표 달성이 가능하다. 더 자세히 알아보면 범용 컴퓨팅에서 53% 평균 성능 향상을 기대할 수 있고, AI는 최대 10배 높은 추론과 학습 성능, 네트워킹과 스토리지 분야에서는 95% 적은 코어로 더 높은 데이터 압축 성능을 보여 최대 2배 성능을 높일 수 있고, 데이터 분석의 경우 최대 3배 성능 개선이 가능하다. 달라진 게임의 법칙 4세대 제온 스케일러블 프로세서의 등장으로 차세대 데이터센터 시장을 놓고 벌이는 다양한 프로세서 간 새로운 경쟁이 본격화될 전망이다. 4세대 제온 스케일러블 프로세서는 단순한 신제품이 아니다. 다양한 워크로드의 급변하는 요구 사항을 해결하고 성능, 확장성 및 효율성에 중점을 둔 차세대 데이터센터 구축에 대한 인텔의 전략을 상징한다. 4세대 제온 스케일러블 프로세서는 반도체 시장의 게임의 법칙은 시대의 흐름에 따라 바뀐다는 것을 보여주는 산증인이다.
Intel
인텔이 12가지 가속기로 데이터센터에 확장성과 유연성을 추가하는 방법
ⓒ Getty Images Bank 사파이어 래피즈(Sapphire Rapids)라는 코드명으로 알려진 인텔의 4세대 제온 스케일러블 프로세서가 최근 출시됐다. 이 칩은 12가지 가속기로 주목받고 있지만 기능적인 흥미를 넘어 인텔이 급격하게 변화하는 데이터센터, 서버, 클라우드 시장에 대응하는 방법이 반영되어 있다는 점에 주목할 필요가 있다. 프로세서의 근본적인 역할은 연산에 있다. 프로세서는 여전히 연산을 빠르게 많이 할 수 있으면 좋다. 하지만 처리해야 하는 데이터의 종류와 특성이 다양해지면서 데이터를 다루는 방법도 진화했다. 그리고 이는 실질적인 성능의 향상으로 이어진다. 나승주 인텔 데이터센터 담당 상무는 4세대 제온 스케일러블 프로세서가 새로운 데이터센터 환경을 반영한다고 설명한다. ⓒ Intel “단순히 작동속도와 코어의 개수를 늘리는 것만이 최고의 가치를 주는 것은 아닙니다. 폭발적으로 증가하는 데이터센터 수요와 복잡한 데이터 처리에 대한 필요성을 풀어내기 위한 방법은 단순히 트랜지스터 수에만 의존할 일이 아니라 완전히 새로운 방법을 찾을 필요가 있습니다.” 인텔코리아 나승주 데이터센터 담당 상무는 데이터센터 환경이 달라지는 만큼 프로세서 구조도 새로 그려져야 한다고 설명한다. 그 관점에서 4세대 제온 스케일러블 프로세서는 이전과 다른 두 가지 전환점을 갖는다. 한 가지는 연산의 양적 증가, 다른 하나는 데이터 처리의 효율성이다. “모놀리식 아키텍처로는 소켓당 절대적 성능을 높이는 데에 한계가 있습니다. 이를 극복하기 위한 노력이 여전히 이어지고 있지만 단위 칩을 더 작게 만들고 효과적으로 연결하는 방법으로 성능 손실을 최소화하고 단일 칩에 준하는 처리 능력을 제공할 수 있습니다.” 최대 4개의 칩릿을 묶는 구조로 같은 공간 안에 더 많은 코어를 넣을 수 있다. ⓒ Intel 인텔은 사파이어 래피즈를 통해 ‘칩릿(Chiplet)’ 구조를 녹였다. 한정된 공간 안에 더 많은 코어를 넣는 것은 반도체 업계의 숙제였다. 제온 스케일러블 프로세서는 4개의 칩릿을 이어 붙여 최대 60개 코어를 쓴다. 칩릿 구조는 생산이 훨씬 쉬워지고 필요에 따라서 단일 칩부터 2개, 4개 등 필요한 만큼 이어 붙여 다양한 설계의 자유도를 제공하기도 한다. 핵심 기술은 칩과 칩 사이를 손실없이 연결하는 데에 있다. “중요한 것은 인터페이스와 패키징 기술입니다. 사실 이 칩릿 구조는 인텔만의 고민은 아닙니다. 반도체 업계, 그리고 더 나아가 산업 전체의 숙제이기 때문에 이를 공론화해서 업계가 함께 답을 찾아가는 중입니다.” 나승주 상무는 기술 개방과 표준에 해결책이 있다고 말했다. UCIe(Universal Chiplet Interconnect Express) 컨소시엄을 통해 전 세계 반도체 관련 기업들이 경쟁을 내려놓고 답을 찾아가고 있다. UCIe는 단순히 코어와 코어를 연결하는 수준이 아니라 단일 패키지 안에서 GPU도, 컨트롤러도, 또 가속기도 성능 손실을 최소화하면서 이어붙일 수 있다. 성능의 확장 뿐 아니라 단순화된 칩들을 자유롭게 맞붙이는 설계의 자유도 얻게 된다. ⓒ Intel 이 모듈형 칩릿 구조를 적극적으로 활용하는 또 하나의 방법이 바로 12가지 가속기다. 데이터의 특성에 맞는 처리 방법은 점점 중요해지고 있다. 인텔은 오래 전부터 MMX(Multi Media eXtension)와 SSE(Streaming SIMD eXtensions)를 비롯해 AVX(Advanced Vector Extensions)와 최근에는 AMX (Advanced Matrix Extensions) 까지 데이터를 효과적으로 처리하는 기술을 발전시켜 왔다. 사파이어 래피즈의 가속기는 프로세서를 현대 데이터센터의 필요에 맞춰 최적화할 수 있는 방법이라는 것이 나승주 상무의 설명이다. “클라우드는 가상머신과 네트워크는 물론이고, 암호화와 인공지능 처리까지 더욱 복잡해지기 때문에 기업은 설계의 고민이 많습니다. 클라우드에서 GPU의 활용도가 높아지고 있는 것은 사실이지만 머신러닝의 학습과 추론 작업의 80%가 CPU에서 이뤄지고 있습니다. 프로세서가 이를 받아들일 필요가 있습니다.” AMX(Advanced Matrix Extensions)가 더해진 이유도 막대한 실시간 학습 데이터가 필요하지 않은 상황에서 범용적인 인공지능 학습이 CPU만으로 충분히 빠르게 이뤄질 수 있도록 하기 위해서다. AMX는 텐서플로와 파이토치 등 범용적인 머신러닝 프레임워크에 최적화되어 기존 환경을 그대로 가속한다. 12가지 가속기를 통해 데이터센터의 특성에 맞는 서버를 구성할 수 있다. ⓒ Intel 마찬가지로 데이터센터에서 큰 리소스를 차지하는 암호화 효율을 높여주는 QAT(QuickAssist Technology), 로드밸런싱을 맡는 DLB(Dynamic Load Balancer), 인메모리 분석 처리를 가속하는 IAA(In-Memory Analytics Accelerator), 데이터 스트리밍을 가속하는 DSA(Data Streaming Accelerator) 등 별도의 전용 가속 코어를 두고, 필요에 따라서 가속기를 선택할 수 있도록 했다. 그리고 이는 데이터센터의 자원 관리에 직접적으로 영향을 끼치게 된다. “가속기가 실제 현장에서 주는 가치는 특정 리소스를 빠르게 처리하는 것도 있지만 특정 처리에 대한 부담을 덜어 CPU가 본래 해야 할 연산에 집중하는 것입니다. 데이터센터에서 70개 코어를 할당해서 쓰던 암호화가 사파이어 래피즈의 QAT 가속기를 이용하면 11개 코어로 충분합니다. 나머지는 실제로 데이터센터가 처리해야 하는 인스턴스에 할당되면서 자원의 효율이 크게 높아집니다.” ⓒ Intel 4세대 제온 스케일러블 프로세서는 구조의 변화와 가속기를 통해서 ‘스케일러블(Scalable)’이라는 이름이 어울리는 확장성을 갖게 됐다. 이는 곧 데이터센터의 최적화, 그리고 유연성과도 연결된다. 반도체는 시대의 흐름을 읽어야 하고, 인텔은 사파이어 래피즈를 통해 기술로 그 답을 제시하고 있다.