“웹 브라우저에서 머신러닝을” 텐서파이어, GPU 기반 머신러닝 대중화 선언
MIT 대학원생팀이 개발한 텐서파이어(TensorFire)는 텐서플로우 방식의 머신러닝 모델을 모든 GPU 상에서 구동할 수 있다. 일반적으로 머신러닝 라이브러리에서 일반적으로 필요한 GPU 전용 미들웨어도 필요없다.
텐서파이어는 머신러닝을 좀 더 폭넓은 사용자층이 이용할 수 있도록 확산하는 데 크게 기여할 것으로 평가된다. 사람들이 이미 보유하고 있는 하드웨어와 소프트웨어를 사용하며, 기존에 필요했던 자원의 극히 일부만으로 정확한 모델 예측을 서비스할 수 있기 때문이다.
텐서파이어는 브라우저에서 GPU 가속 그래픽을 렌더링하는 크로스플랫폼 시스템인 WebGL 표준을 사용해 동작한다. WebGL은 셰이더를 작성하는 데 사용하는 C 비슷한 언어인 GLSL을 지원하는데, GLSL은 데이터를 GPU 상에서 바로 변형하는 데 사용하는 짧은 프로그램이다.
셰이더는 보통 WeGL 파이프라인에서 그래픽을 렌더링하는 방법을 변형하는 데 사용한다. 예를 들어 그림자를 렌더링하거나 다른 시각적인 효과를 만들어내는 등이다. 하지만 텐서파이어는 셰이더를 텐서플로우 모델의 예측 생성에 필요한 병렬 연산을 실행하는 데 사용한다. 또한 기존 텐서플로우와 케라스 모델을 가져오는 데 사용하는 라이브러리도 갖추고 있다.
이 프레임워크를 이용하면 훈련된 모델을 웹브라우저에 바로 배치할 수 있으며, 예측 분석을 브라우저에서 로컬로 서비스할 수 있다. 사용자는 다운로드나 설치, 컴파일 작업이 필요없으며, 모든 작업은 브라우저에서 직접 이루어진다. 예측 분석을 만드는 데 사용하는 데이터 역시 모두 클라이언트 상에서 처리한다. GPU의 종류도 상관없으며, AMD와 엔비디아 GPU 모두 지원한다.
텐서파이어를 이용한 웹 기반 예제 중 하나는 스타일을 전송하는 신경망인데, 예술작품 하나의 스타일을 다른 이미지에 매핑할 수 있다. 이 시연에서 가장 느린 부분은 모델을 다운로드하고 셰이더 파이프라인을 컴파일하는 것이며, 실제 실행은 1~2초밖에 걸리지 않는다.
텐서파이어 개발팀은 다른 어떤 솔루션보다 빠르다고 강조했다. GPU와 CPU 사이에 데이터를 주고받는 것이 보통 성능 병목인데, 텐서파이어는 가능한 많은 데이터를 GPU 상에서 한 번에 처리하는 방식으로 이런 문제를 해결했다.
텐서파이어 접근 방법의 가장 두드러진 이점은 이식성과 편의성이다. 현대적인 웹 브라우저는 대부분 운영체제와 하드웨어 플랫폼에서 동작하며, 여기에 더해 보급형 스마트폰에도 충분한 양의 GPU 성능이 남아 있다. 또 머신러닝 모델에서 유용한 결과를 얻기 위한 작업의 많은 부분은 머신러닝 파이프라인을 설정하는 것이다. 이 과정의 상당 부분을 그저 웹 브라우저를 열어 뭔가를 클릭하는 것으로 단순화하는 것은 매우 유용하다.
텐서파이어 개발팀이 주장하는 또 하나의 장점은 예측 분석의 배치를 온전히 클라이언트에서 할 수 있다는 것이다. 교육을 마친 모델이나 데이터가 이미 클라우드에 배치된 경우에는 이점이 그리 크지 않지만, 배치된 모델이 작고 데이터가 클라이언트 측에 있고 사용자가 뭔가를 업로드하는 것이 편하지 않은 애플리케이션에 안성맞춤이다.
세 번째 이점은 이론적으로 머신러닝에 사용할 수 있는 그래픽 카드의 상표에 대한 제약을 완화한다는 것이다. 그동안 엔비디아 CUDA 표준은 GPU를 통해 머신러닝을 가속화할 때 많이 찾는 것이었는 것, 좀 더 개방적인 OpenCL 표준보다 더 높은 성능을 제공하기 때문이다. 하지만 OpenCL은 폭넓은 하드웨어를 지원한다. AMD는 OpenCL 성능 문제 관련 처리 계획이 있지만, 텐서파이어는 사용자나 개발자가 이 문제를 완전히 비켜갈 수 있도록 해 준다.
텐서파이어는 최근 증가하고 있는 또 하나의 현상에도 부합한다. 바로 머신러닝 모델을 약간의 정확성을 희생해 더 작고 효율적으로 만드는 것이다. 이처럼 정확도를 낮추는 접근법은 더 작은 모델을 클라이언트에 배치해 예측 분석을 더 빨리 수행할 수 있다는 것을 의미한다.
텐서파이어 개발팀은 이런 접근법으로 소프트웨어를 더 다양한 GPU와 브라우저에서 실행할 수 있고, 특히 WebGL 확장 프로그램을 온전히 지원하지 않는 환경에서도 이용할 수 있다고 강조했다.
마지막으로 텐서파이어 개발팀은 해당 라이브러리를 MIT 라이선스 기반의 오픈소스 프로젝트로 발표할 계획인데, 텐서파이어에서 진행한 가속화 작업을 다양한 애플리케이션, 심지어 텐서플로우나 머신러닝과 아무런 관련이 없는 애플리케이션에도 사용할 수 있다.
개발팀은 텐서파이어의 저수준 GLSL API는 “임의의 범용 병렬 연산에도 사용할 수 있다”고 설명했는데, 이는 GPU 기반의 브라우저 내 클라이언트 측 연산을 위한 다른 프레임워크를 텐서파이어 상에 구축할 수도 있다는 의미이다. editor@itworld.co.kr
함께 보면 좋은 콘텐츠
Sponsored
Seagate
“작지만 큰 영향력” 하드 드라이브의 나노 스케일 혁신
ⓒ Seagate 플래터당 3TB라는 전례 없는 드라이브 집적도를 자랑하는 새로운 하드 드라이브 플랫폼이 등장하며 디지털 시대의 새로운 이정표를 세웠다. 플래터당 3TB를 저장할 수 있다는 것은 동일한 면적에서 스토리지 용량을 기존 드라이브 대비 거의 두 배로 늘릴 수 있다는 것을 의미한다. 이러한 혁신은 데이터 스토리지의 미래와 데이터센터의 디지털 인프라에 괄목할 만한 영향을 미친다. AI의 발전과 함께 데이터의 가치가 그 어느 때보다 높아졌다. IDC에 따르면 2027년에는 전 세계에서 총 291ZB의 데이터가 생성될 것으로 예측되며, 이는 스토리지 제조 용량의 15배 이상일 것으로 보인다. 대부분의 데이터를 호스팅하는 대형 데이터 센터에 저장된 데이터 중 90%가 하드 드라이브에 저장된다. 즉, AI 애플리케이션의 주도로 데이터가 급증함에 따라 물리적 공간을 늘리지 않으면서도 데이터를 저장할 수 있는 스토리지 기술 혁신이 필요하다. 데이터 스토리지 인프라를 업그레이드하는 것은 단순히 기술적인 문제가 아니라 지금 시대가 직면한 규모, 총소유비용(TCO), 지속가능성이라는 과제에 대한 논리적 해답인 셈이다. 열 보조 자기 기록(HAMR) 기술은 선구적인 하드 드라이브 기술로 드라이브 집적도 향상을 위해 지난 20년 동안 수많은 연구를 거쳐 완성되어 왔다. 씨게이트 모자이크 3+ 플랫폼은 이러한 HAMR 기술을 씨게이트만의 방식으로 독특하게 구현한 것으로, 미디어(매체)부터 쓰기, 읽기 및 컨트롤러에 이르는 복잡한 나노 스케일 기록 기술과 혁신적인 재료 과학 역량을 집약한 결정체다. 이 플랫폼은 데이터 비트를 변환하고 자기 및 열 안정성을 유지하면서 더욱 촘촘하게 패킹해서 각 플래터에 훨씬 더 많은 데이터를 안정적이고 효율적으로 저장할 수 있다. 예를 들어, 기존 데이터센터에 있는 16TB 드라이브를 30TB 드라이브로 업그레이드하면 동일한 면적에서 스토리지 용량을 두 배로 늘릴 수 있다. 더 낮은 용량에서 업그레이드한다면 상승 폭은 더욱 커진다. 이 경우, 테라바이트당 전력 소비량이 40% 감소하는 등 스토리지 총소유비용(TCO)이 크게 개선된다. 또한 효율적인 자원 할당과 재활용 재료 사용으로 운영 비용을 절감하고 테라바이트당 탄소 배출량을 55% 감소시켜 데이터센터가 지속 가능성 목표를 달성할 수 있다. 드라이브 집적도 향상은 하이퍼스케일과 프라이빗 데이터센터의 판도를 바꿀 수 있다. 데이터센터가 급증하며 전력사용량과 탄소배출량 역시 늘어나 데이터센터의 지속가능성이 화두가 되고 있는 가운데, 과학기술정보통신부는 ‘탄소중립 기술혁신 추진전략-10대 핵심기술 개발방향’에서 2030년까지 데이터센터 전력소모량을 20% 절감하겠다고 밝힌 바 있다. 이러한 목표에 발맞춰, 집적도를 획기적으로 개선한 대용량 데이터 스토리지를 활용하는 것은 원활하고 지속적인 AI 모델 학습, 혁신 촉진 및 비즈니스 성공을 위해 필수적이다. 엔터프라이즈 데이터센터의 경우 제한된 공간, 전력, 예산에 맞춰 확장할 수 있는 지속 가능한 방법을 찾아야 한다. 하드 드라이브의 집적도 혁신은 점점 더 커져가는 클라우드 생태계와 AI 시대에 대응하는 해답이자, 동일한 공간에 더 많은 엑사바이트를 저장하면서도 자원 사용은 줄이도록 인프라를 확장할 수 있는 방법이다. 이는 글로벌 데이터 영역에서 경쟁력을 유지하고 글로벌 디지털 경제의 선두주자로서 입지를 강화하는 데 매우 중요하다.
Seagate
'반박 불가' 하드 드라이브와 SSD에 관한 3가지 진실
ⓒ Getty Images Bank 하드 드라이브가 멸종할 것이라는 논쟁이 10년 넘게 계속되고 있다. 빠른 속도와 뛰어난 성능이 필요한 애플리케이션에 적합한 플래시 스토리지의 연매출이 증가하고 있는 것은 자명한 사실이다. 하지만, 클라우드의 보편화 및 AI 사용 사례의 등장으로 인해 방대한 데이터 세트의 가치가 높아지는 시대에 하드 드라이브는 플래시 스토리지로 대체할 수 없는 가치를 가지고 있다. 전 세계 엑사바이트(EB) 규모 데이터의 대부분을 저장하는 하드 드라이브는 데이터센터에서 그 어느 때보다 필수적이다. 전 세계 데이터 세트의 대부분이 저장된 엔터프라이즈 및 대규모 클라우드 데이터센터는 데이터 성장에서 핵심이 될 것이다. 하드 드라이브와 SSD를 비교하자면, 하드 드라이브 스토리지는 2022년에서 2027년 사이 6,996EB 증가할 것으로 예상되는 반면, SSD는 1,363EB 증가할 것으로 보인다. ⓒ Seagate 생성형 AI 시대에는 콘텐츠를 경제적으로 저장해야 하기 때문에 플래시 기술과 밀접하게 결합된 컴퓨팅 클러스터는 더 큰 하드 드라이브 EB의 다운스트림 수요를 직간접적으로 촉진할 것이다. 하드 드라이브가 왜 데이터 스토리지 아키텍처의 중심이 될 수밖에 없는지는 시장 데이터를 근거로 설명 가능하다. 가격 책정 근거 없는 믿음 : SSD 가격이 곧 하드 드라이브 가격과 같아질 것이다. 사실 : SSD와 하드 드라이브 가격은 향후 10년간 어느 시점에도 수렴하지 않을 것이다. 데이터가 이를 명확하게 뒷받침한다. 하드 드라이브는 SSD에 비해 테라바이트당 비용 면에서 확고한 우위를 점하고 있으며, 이로 인해 하드 드라이브는 데이터센터 스토리지 인프라의 확고한 주춧돌 역할을 하고 있다. IDC 및 포워드 인사이트(Forward Insights)의 연구에 따르면, 하드 드라이브는 대부분의 기업 업무에 가장 비용 효율적인 옵션으로 유지될 것으로 전망된다. 엔터프라이즈 SSD와 엔터프라이즈 하드 드라이브의 TB당 가격 차이는 적어도 2027년까지 6대 1 이상의 프리미엄이 유지될 것으로 예상된다. ⓒ Seagate 이러한 TB당 가격 차이는 장치 구입 비용이 총소유비용(TCO)에서 가장 큰 비중을 차지하는 데이터센터에서 특히 두드러지게 드러난다. 장치 구입, 전력, 네트워킹, 컴퓨팅 비용을 포함한 모든 스토리지 시스템 비용을 고려하면 TB당 TCO는 하드 드라이브 기반 시스템이 훨씬 더 우수하게 나타난다. ⓒ Seagate 따라서, 플래시는 특정 고성능 작업의 수행에 탁월한 스토리지이지만, 하드 드라이브는 당분간 안정적이고 비용 효율적이며 널리 채택된 솔루션을 제공하는 데이터센터에서 계속해서 주류로 사용될 것이다. 공급과 확장의 관계 근거 없는 믿음 : NAND 공급이 모든 하드 드라이브 용량을 대체할 정도로 증가할 수 있다. 사실 : 하드 드라이브를 NAND로 완전히 교체하려면 감당할 수 없는 설비투자(CapEx)가 필요하다. NAND 산업이 모든 하드 드라이브 용량을 대체하기 위해 공급을 빠르게 늘릴 수 있다는 주장은 재정적, 물류적으로 엄청난 비용이 발생한다는 점을 간과한 낙관적인 생각이다. 산업 분석기관 욜 인텔리전스(Yole Intelligence)의 2023년 4분기 NAND 시장 모니터 리포트에 따르면, 전체 NAND 산업은 2015년~2023년 사이 3.1제타바이트(ZB)를 출하하면서 총 매출의 약 47%에 해당하는 2,080억 달러의 막대한 자본 지출을 투자해야 했다. 반면, 하드 드라이브 산업은 데이터센터 스토리지 수요의 거의 대부분을 매우 자본 효율적인 방식으로 해결하고 있다. 씨게이트가 2015년~2023년 사이 3.5ZB의 스토리지를 출하하며 투자한 자본은 총 43억 달러로, 전체 하드 드라이브 매출의 약 5%에 불과하다. 그러나 NAND 산업의 경우 ZB당 약 670억 달러에 해당하는 금액을 투자한 것으로 나타나 하드 드라이브가 데이터센터에 ZB를 공급하는 것이 훨씬 더 효율적임을 알 수 있다. ⓒ Seagate 작업 부하 근거 없는 믿음 : 올 플래시 어레이(AFA)만이 최신 엔터프라이즈 작업 부하의 성능 요구를 충족할 수 있다. 사실 : 엔터프라이즈 스토리지 아키텍처는 일반적으로 디스크 또는 하이브리드 어레이, 플래시, 테이프를 사용하여 특정 작업 부하의 비용, 용량, 성능 요구 사항에 최적화할 수 있도록 미디어 유형을 혼합한다. 기업이 플래시 없이는 최신 작업 부하의 성능 수요를 따라잡지 못할 위험이 있다는 주장은 다음과 같은 3가지 이유로 반박 가능하다. 첫째, 대부분의 최신 작업 부하에는 플래시가 제공하는 성능상의 이점이 필요하지 않다. 전 세계 데이터의 대부분은 클라우드와 대규모 데이터센터에 저장되어 있으며, 이러한 환경에서는 작업 부하 중 극히 일부에만 상당한 성능이 필요하다는 파레토 법칙을 따르고 있다. 둘째, 예산 제약이 있고 데이터 세트가 빠르게 증가하는 기업들은 성능뿐만 아니라 용량과 비용의 균형을 맞춰야 한다. 플래시 스토리지는 읽기 집약적인 시나리오에서는 탁월한 성능을 발휘하지만 쓰기 작업이 증가하면 내구성이 떨어져 오류 수정과 오버프로비저닝에 추가 비용이 발생한다. 또한, 대규모 데이터 세트나 장기 보존의 경우 영역 밀도가 증가하는 디스크 드라이브가 더 비용 효율적인 솔루션일 뿐만 아니라 수천 개의 하드 드라이브를 병렬로 활용하면 플래시를 보완하는 성능을 달성할 수 있다. 셋째, 수많은 하이브리드 스토리지 시스템은 다양한 미디어 유형의 강점을 단일 유닛에 원활하게 통합하고 최대한으로 활용할 수 있도록 세밀하게 조정된 소프트웨어 정의 아키텍처를 사용한다. 이러한 스토리지는 유연성을 제공하므로 기업은 지속적으로 변화하는 요구 사항에 따라 스토리지 구성을 조정할 수 있다. AFA와 SSD는 고성능의 읽기 집약적인 작업에 매우 적합하다. 하지만 하드 드라이브가 이미 훨씬 낮은 TCO로 제공하는 기능을 AFA로 불필요하게 비싼 방법으로 제공하는 것은 비용 효율적이지 않을 뿐만 아니라, AFA가 하드 드라이브를 대체할 수 있다고 주장하는 근거가 될 수 없다.