2024년 IT 업계에서 가장 주목해야 할 기술은 여전히 AI다. 인터넷에 버금가는 사회/경제적 혁신을 이끌게 될 기술로 주목받는 AI는 2024년 한층 고도화되면서 안정기에 접어들 것으로 예상된다. 이에 따라 AI에 능통한 기업과 그렇지 못한 기업의 지식 격차는 2024년 기업의 생산성과 수익을 판가름할 것으로 보인다. 여기서는 2024년 한해 계획에 참고하면 좋을 만한 AI 관련 2024년 전망을 정리한다.
2024년에도 변화의 중심은 AI
가트너는 오는 2026년까지 생성형 AI 모델이나 API를 사용하는 기업이 80%에 달할 것으로 예상했다. 2023년 초에는 5% 미만이었던 것을 고려하면 폭발적인 성장이다. 이에 따라 AI의 신뢰와 리스크, 보안 관리를 의미하는 AI TRiSM(Artificial Intelligence Trust, Risk, and Security Management)의 필요성도 분명해졌다. 사전 예방적 데이터 보호, AI 전용 보안, 데이터 및 모델 드리프트, 모델 모니터링, 입출력 리스트 제어 등과 같은 AI TRiSM 기능을 적용하는 기업은 오류 및 불법 정보를 최대 80%까지 줄임으로써 보다 정확하게 의사결정할 수 있다.AI 성능에 핵심적인 역할을 하는 AI 반도체 시장도 몸집이 커지고 있다. 딜로이트는 생성형 AI 전용 반도체칩 시장 규모가 2024년 400억 달러(약 51조 9,600억 원) 수준까지 이르렀다가 2027년에는 4,000억 달러(약 519조 원)에 달할 것으로 전망했다. 또한 딜로이트는 기업용 소프트웨어 업체 대부분이 올해를 기점으로 제품과 서비스에 생성형 AI를 추가할 것이며, 생성형 AI를 도입한 SW 업체는 100억 달러(약 13조 원)의 추가 매출을 얻을 수 있다고 분석했다.
실무자의 업무 환경은 어떻게 바뀔까? 우선 중요도가 높지 않은 업무에서는 생성형 AI 사용이 고착화될 것으로 예상된다. 퀄트릭스의 ‘2024년 직원 경험 트렌드’에 따르면, 많은 직원이 자료 작성(63%), 개인 비서 역할(59%), 내부 지원 부서에 연락(50%)과 같이 AI를 직접 제어할 수 있는 업무에서 AI를 활용하는 것을 긍정적으로 생각하고 있었다. 반면 교육, 업무 성과 평가, 채용 및 승진 면접처럼 주관적인 의견이 개입되고 중요도가 높은 업무에 대해서는 선호도가 30%대에 그쳤다.
AI는 직원의 업무 방식뿐 아니라 일자리 지형도 바꾸고 있다. 생성형 AI가 창의적인 사고를 성공적으로 수행하는 모습을 입증하면서 2023년에는 더 많은 일자리가 사라질 것에 대한 우려가 있었지만, 한편에서는 프롬프트 엔지니어(Prompt Engineer)처럼 AI가 창출한 새로운 역할도 생겨났다. SAS는 “AI 기술이 고용 시장에 일시적인 혼란을 야기할 수 있지만, 앞으로 경제 성장을 견인할 직무를 창출할 것“이라며, 올해는 이런 신규 일자리가 크게 주목받을 것으로 예상했다.
접근 방식도 달라진다
AI 도입이 필수적인 흐름이라면 2024년에는 비용 효율적인 운영을 고민해야 하는 시기다. 올해부터는 AI에 대한 논의가 이론에서 실제 추론 및 운영 환경으로 전환되면서 투자에 대한 초점 역시 훈련 비용에서 추론/운영 비용으로 이동할 것으로 보인다. 델 테크놀로지스에 따르면, 훈련 비용은 모델의 크기와 데이터 집합 사용에 따라 결정되지만 추론/운영 비용은 트랜잭션 수, 사용자 규모, 데이터 유형, 지속적인 유지보수에 좌우된다. 클라우데라는 비교적 적은 비용과 훈련 데이터로도 LLM 성능을 최적화하는 대표적인 3가지 방법으로 프롬프트 엔지니어링, 검색증강생성(Retrieve Augmented Generation, RAG), 파인 튜닝(Fine Tuning)에 주목했다. 또한 앞으로는 많은 기업이 더 나은 LLM을 만들기 위해 MLOps(Machine Learning Operation)와 데이터 페더레이션 기능 개발에 주력할 것으로 예상했다.
AI의 잠재력을 극대화해 경쟁 우위를 확보하기 위한 방법으로 에퀴닉스는 ▲신뢰할 수 있는 출처 ▲전략적인 데이터 수집 ▲적절한 모델 3가지 요소가 필요하다고 강조했다. 또한 지난해에는 생성형 AI가 기업의 데이터를 유출하는 사고가 있었던 만큼 2024년에는 민감 데이터를 위험 요소로부터 효율적으로 보호하는 방법으로 프라이빗 AI 논의가 활발해질 것으로 전망했다.
마케팅 캠페인도 AI로 효과적으로
디지털 마케팅 분야에서도 AI가 핵심 키워드다. 인크로스는 경기 침체로 인해 2024년에는 광고 효율을 극대화할 수 있는 서비스와 기술이 계속해서 주목받을 것이라고 분석했는데, 특히 ‘AI 마케팅’이 크게 발전할 것이라고 전망했다. 실제로 마케팅 업계에서는 현재 AI를 활용해 광고 소재를 제작하고 ML을 통해 캠페인 효율을 최적화하는 추세가 점차 확산하고 있다. 인크로스는 광고 업계 전반에 AI/ML의 영향력이 확대할 것으로 바라봤다. 몰로코의 조사도 인크로스의 전망을 뒷받침한다. 몰로코가 전 세계 모바일 앱 마케터를 대상으로 실시한 조사에 따르면, 퍼포먼스 기반 모바일 마케팅 솔루션을 선택할 때 고려하는 10가지 요소 중 ‘고급 ML 기술’이 37%로 1위를 차지했다.
광고 패러다임 자체가 변화할 것이라는 전망도 있다. 메조미디어는 일방향적인 기존의 광고 방식이 생성형 AI를 통해 이용자와 상호작용하는 방식으로 광고 패러다임이 바뀔 것이며, 이에 따라 2024년에는 많은 마케터가 프롬프트 작성, 디지털 리터러시에 대한 이해, 유해 정보 필터링과 같은 생성형 AI 역량을 개발할 것으로 예상했다.
기회 혹은 위기…AI라는 양날의 검
모든 기술에는 어두운 이면이 있는 법이다. 올해 기업의 보안에 가장 큰 영향을 미칠 요소로 AI가 꼽히는 것도 자연스럽다. 미국보안산업협회(Security Industry Association, SIA)는 2024년 기업 보안에 영향을 미칠 것으로 예상되는 가장 중요한 트렌드로 AI를 선정했다. 구체적으로는 ‘AI 보안’을 가장 중요한 트렌드로 선정했으며, AI가 탑재된 디지털카메라의 비디오 인텔리전스, 생성형 AI, AI 규제가 뒤를 이었다. 매해 연말 보안 위협 전망을 내놓는 보안 업체들도 일제히 AI의 어두운 이면을 지적했다. 이글루코퍼레이션과 SK쉴더스는 피싱 이메일 작성, 악성코드 생성 등 생성형 AI를 악용해 해커가 공격을 더 쉽고 빠르게 수행할 수 있는 환경이 마련되면서 2024년 생성형 AI를 악용한 사이버공격이 증가할 것으로 전망했다.
특히 프루프포인트는 현재 맬웨어 개발자들이 AI를 활용해 더 많은 표적에 접근할 수 있는 첨단 프로그래밍 기법을 만들고 있음을 지적하며, 그 결과 2024년에는 샌드박스나 EDR(Endpoint Detection and Response)과 같은 도구를 피할 수 있는 맬웨어가 크게 확산하며 ‘맬웨어의 각축장’이 벌어질 수 있다고 경고했다.
세상의 모든 IT 리서치 자료, '넘버스'
mia.kim@foundryco.com여기서 소개한 모든 자료는 넘버스(Numbers) 서비스에 등록돼 있다. 넘버스는 IT 전문 미디어 ITWorld가 제공하는 IT 리서치 자료 메타 검색 서비스다. IDC, 가트너, 포레스터 등 주요 시장조사 업체의 자료는 물론 국내외 정부와 IT 기업, 민간 연구소 등이 발표한 기술 관련 최신 자료를 총망라했다. 2024년 1월 현재 1,300여 건의 자료가 등록돼 있으며, 매달 50여 건이 새롭게 올라온다. 등록된 자료는 출처와 토픽, 키워드 등을 기준으로 검색할 수 있고, 관련 기사를 통해 해당 자료의 문맥을 이해할 수 있다. 자료의 원문 제목과 내용을 볼 수 있는 링크, 자료를 발행한 주체와 발행 일자도 함께 확인할 수 있다.
함께 보면 좋은 콘텐츠
Sponsored
Seagate
“작지만 큰 영향력” 하드 드라이브의 나노 스케일 혁신
ⓒ Seagate 플래터당 3TB라는 전례 없는 드라이브 집적도를 자랑하는 새로운 하드 드라이브 플랫폼이 등장하며 디지털 시대의 새로운 이정표를 세웠다. 플래터당 3TB를 저장할 수 있다는 것은 동일한 면적에서 스토리지 용량을 기존 드라이브 대비 거의 두 배로 늘릴 수 있다는 것을 의미한다. 이러한 혁신은 데이터 스토리지의 미래와 데이터센터의 디지털 인프라에 괄목할 만한 영향을 미친다. AI의 발전과 함께 데이터의 가치가 그 어느 때보다 높아졌다. IDC에 따르면 2027년에는 전 세계에서 총 291ZB의 데이터가 생성될 것으로 예측되며, 이는 스토리지 제조 용량의 15배 이상일 것으로 보인다. 대부분의 데이터를 호스팅하는 대형 데이터 센터에 저장된 데이터 중 90%가 하드 드라이브에 저장된다. 즉, AI 애플리케이션의 주도로 데이터가 급증함에 따라 물리적 공간을 늘리지 않으면서도 데이터를 저장할 수 있는 스토리지 기술 혁신이 필요하다. 데이터 스토리지 인프라를 업그레이드하는 것은 단순히 기술적인 문제가 아니라 지금 시대가 직면한 규모, 총소유비용(TCO), 지속가능성이라는 과제에 대한 논리적 해답인 셈이다. 열 보조 자기 기록(HAMR) 기술은 선구적인 하드 드라이브 기술로 드라이브 집적도 향상을 위해 지난 20년 동안 수많은 연구를 거쳐 완성되어 왔다. 씨게이트 모자이크 3+ 플랫폼은 이러한 HAMR 기술을 씨게이트만의 방식으로 독특하게 구현한 것으로, 미디어(매체)부터 쓰기, 읽기 및 컨트롤러에 이르는 복잡한 나노 스케일 기록 기술과 혁신적인 재료 과학 역량을 집약한 결정체다. 이 플랫폼은 데이터 비트를 변환하고 자기 및 열 안정성을 유지하면서 더욱 촘촘하게 패킹해서 각 플래터에 훨씬 더 많은 데이터를 안정적이고 효율적으로 저장할 수 있다. 예를 들어, 기존 데이터센터에 있는 16TB 드라이브를 30TB 드라이브로 업그레이드하면 동일한 면적에서 스토리지 용량을 두 배로 늘릴 수 있다. 더 낮은 용량에서 업그레이드한다면 상승 폭은 더욱 커진다. 이 경우, 테라바이트당 전력 소비량이 40% 감소하는 등 스토리지 총소유비용(TCO)이 크게 개선된다. 또한 효율적인 자원 할당과 재활용 재료 사용으로 운영 비용을 절감하고 테라바이트당 탄소 배출량을 55% 감소시켜 데이터센터가 지속 가능성 목표를 달성할 수 있다. 드라이브 집적도 향상은 하이퍼스케일과 프라이빗 데이터센터의 판도를 바꿀 수 있다. 데이터센터가 급증하며 전력사용량과 탄소배출량 역시 늘어나 데이터센터의 지속가능성이 화두가 되고 있는 가운데, 과학기술정보통신부는 ‘탄소중립 기술혁신 추진전략-10대 핵심기술 개발방향’에서 2030년까지 데이터센터 전력소모량을 20% 절감하겠다고 밝힌 바 있다. 이러한 목표에 발맞춰, 집적도를 획기적으로 개선한 대용량 데이터 스토리지를 활용하는 것은 원활하고 지속적인 AI 모델 학습, 혁신 촉진 및 비즈니스 성공을 위해 필수적이다. 엔터프라이즈 데이터센터의 경우 제한된 공간, 전력, 예산에 맞춰 확장할 수 있는 지속 가능한 방법을 찾아야 한다. 하드 드라이브의 집적도 혁신은 점점 더 커져가는 클라우드 생태계와 AI 시대에 대응하는 해답이자, 동일한 공간에 더 많은 엑사바이트를 저장하면서도 자원 사용은 줄이도록 인프라를 확장할 수 있는 방법이다. 이는 글로벌 데이터 영역에서 경쟁력을 유지하고 글로벌 디지털 경제의 선두주자로서 입지를 강화하는 데 매우 중요하다.
Seagate
'반박 불가' 하드 드라이브와 SSD에 관한 3가지 진실
ⓒ Getty Images Bank 하드 드라이브가 멸종할 것이라는 논쟁이 10년 넘게 계속되고 있다. 빠른 속도와 뛰어난 성능이 필요한 애플리케이션에 적합한 플래시 스토리지의 연매출이 증가하고 있는 것은 자명한 사실이다. 하지만, 클라우드의 보편화 및 AI 사용 사례의 등장으로 인해 방대한 데이터 세트의 가치가 높아지는 시대에 하드 드라이브는 플래시 스토리지로 대체할 수 없는 가치를 가지고 있다. 전 세계 엑사바이트(EB) 규모 데이터의 대부분을 저장하는 하드 드라이브는 데이터센터에서 그 어느 때보다 필수적이다. 전 세계 데이터 세트의 대부분이 저장된 엔터프라이즈 및 대규모 클라우드 데이터센터는 데이터 성장에서 핵심이 될 것이다. 하드 드라이브와 SSD를 비교하자면, 하드 드라이브 스토리지는 2022년에서 2027년 사이 6,996EB 증가할 것으로 예상되는 반면, SSD는 1,363EB 증가할 것으로 보인다. ⓒ Seagate 생성형 AI 시대에는 콘텐츠를 경제적으로 저장해야 하기 때문에 플래시 기술과 밀접하게 결합된 컴퓨팅 클러스터는 더 큰 하드 드라이브 EB의 다운스트림 수요를 직간접적으로 촉진할 것이다. 하드 드라이브가 왜 데이터 스토리지 아키텍처의 중심이 될 수밖에 없는지는 시장 데이터를 근거로 설명 가능하다. 가격 책정 근거 없는 믿음 : SSD 가격이 곧 하드 드라이브 가격과 같아질 것이다. 사실 : SSD와 하드 드라이브 가격은 향후 10년간 어느 시점에도 수렴하지 않을 것이다. 데이터가 이를 명확하게 뒷받침한다. 하드 드라이브는 SSD에 비해 테라바이트당 비용 면에서 확고한 우위를 점하고 있으며, 이로 인해 하드 드라이브는 데이터센터 스토리지 인프라의 확고한 주춧돌 역할을 하고 있다. IDC 및 포워드 인사이트(Forward Insights)의 연구에 따르면, 하드 드라이브는 대부분의 기업 업무에 가장 비용 효율적인 옵션으로 유지될 것으로 전망된다. 엔터프라이즈 SSD와 엔터프라이즈 하드 드라이브의 TB당 가격 차이는 적어도 2027년까지 6대 1 이상의 프리미엄이 유지될 것으로 예상된다. ⓒ Seagate 이러한 TB당 가격 차이는 장치 구입 비용이 총소유비용(TCO)에서 가장 큰 비중을 차지하는 데이터센터에서 특히 두드러지게 드러난다. 장치 구입, 전력, 네트워킹, 컴퓨팅 비용을 포함한 모든 스토리지 시스템 비용을 고려하면 TB당 TCO는 하드 드라이브 기반 시스템이 훨씬 더 우수하게 나타난다. ⓒ Seagate 따라서, 플래시는 특정 고성능 작업의 수행에 탁월한 스토리지이지만, 하드 드라이브는 당분간 안정적이고 비용 효율적이며 널리 채택된 솔루션을 제공하는 데이터센터에서 계속해서 주류로 사용될 것이다. 공급과 확장의 관계 근거 없는 믿음 : NAND 공급이 모든 하드 드라이브 용량을 대체할 정도로 증가할 수 있다. 사실 : 하드 드라이브를 NAND로 완전히 교체하려면 감당할 수 없는 설비투자(CapEx)가 필요하다. NAND 산업이 모든 하드 드라이브 용량을 대체하기 위해 공급을 빠르게 늘릴 수 있다는 주장은 재정적, 물류적으로 엄청난 비용이 발생한다는 점을 간과한 낙관적인 생각이다. 산업 분석기관 욜 인텔리전스(Yole Intelligence)의 2023년 4분기 NAND 시장 모니터 리포트에 따르면, 전체 NAND 산업은 2015년~2023년 사이 3.1제타바이트(ZB)를 출하하면서 총 매출의 약 47%에 해당하는 2,080억 달러의 막대한 자본 지출을 투자해야 했다. 반면, 하드 드라이브 산업은 데이터센터 스토리지 수요의 거의 대부분을 매우 자본 효율적인 방식으로 해결하고 있다. 씨게이트가 2015년~2023년 사이 3.5ZB의 스토리지를 출하하며 투자한 자본은 총 43억 달러로, 전체 하드 드라이브 매출의 약 5%에 불과하다. 그러나 NAND 산업의 경우 ZB당 약 670억 달러에 해당하는 금액을 투자한 것으로 나타나 하드 드라이브가 데이터센터에 ZB를 공급하는 것이 훨씬 더 효율적임을 알 수 있다. ⓒ Seagate 작업 부하 근거 없는 믿음 : 올 플래시 어레이(AFA)만이 최신 엔터프라이즈 작업 부하의 성능 요구를 충족할 수 있다. 사실 : 엔터프라이즈 스토리지 아키텍처는 일반적으로 디스크 또는 하이브리드 어레이, 플래시, 테이프를 사용하여 특정 작업 부하의 비용, 용량, 성능 요구 사항에 최적화할 수 있도록 미디어 유형을 혼합한다. 기업이 플래시 없이는 최신 작업 부하의 성능 수요를 따라잡지 못할 위험이 있다는 주장은 다음과 같은 3가지 이유로 반박 가능하다. 첫째, 대부분의 최신 작업 부하에는 플래시가 제공하는 성능상의 이점이 필요하지 않다. 전 세계 데이터의 대부분은 클라우드와 대규모 데이터센터에 저장되어 있으며, 이러한 환경에서는 작업 부하 중 극히 일부에만 상당한 성능이 필요하다는 파레토 법칙을 따르고 있다. 둘째, 예산 제약이 있고 데이터 세트가 빠르게 증가하는 기업들은 성능뿐만 아니라 용량과 비용의 균형을 맞춰야 한다. 플래시 스토리지는 읽기 집약적인 시나리오에서는 탁월한 성능을 발휘하지만 쓰기 작업이 증가하면 내구성이 떨어져 오류 수정과 오버프로비저닝에 추가 비용이 발생한다. 또한, 대규모 데이터 세트나 장기 보존의 경우 영역 밀도가 증가하는 디스크 드라이브가 더 비용 효율적인 솔루션일 뿐만 아니라 수천 개의 하드 드라이브를 병렬로 활용하면 플래시를 보완하는 성능을 달성할 수 있다. 셋째, 수많은 하이브리드 스토리지 시스템은 다양한 미디어 유형의 강점을 단일 유닛에 원활하게 통합하고 최대한으로 활용할 수 있도록 세밀하게 조정된 소프트웨어 정의 아키텍처를 사용한다. 이러한 스토리지는 유연성을 제공하므로 기업은 지속적으로 변화하는 요구 사항에 따라 스토리지 구성을 조정할 수 있다. AFA와 SSD는 고성능의 읽기 집약적인 작업에 매우 적합하다. 하지만 하드 드라이브가 이미 훨씬 낮은 TCO로 제공하는 기능을 AFA로 불필요하게 비싼 방법으로 제공하는 것은 비용 효율적이지 않을 뿐만 아니라, AFA가 하드 드라이브를 대체할 수 있다고 주장하는 근거가 될 수 없다.